scispace - formally typeset
Search or ask a question
Topic

Diffuser (thermodynamics)

About: Diffuser (thermodynamics) is a research topic. Over the lifetime, 6731 publications have been published within this topic receiving 54738 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a transition model for internal flows which enables the prediction of the change of flow regime from turbulent through intermittent to laminar has been implemented by numerical simulation, and the model was employed to study a flow which is decelerated by passing through a conical diffuser.

45 citations

PatentDOI
TL;DR: In this paper, the authors describe an acoustic jet that directs high momentum flux gas particles essentially tangentially into the boundary layer of the flow in a diffuser, an engine air inlet, a jet engine gas flow path or on the suction surface of an airfoil.
Abstract: The nozzle of an acoustic jet directs high momentum flux gas particles essentially tangentially into the boundary layer of the flow in a diffuser, an engine air inlet, a jet engine gas flow path or on the suction surface of an airfoil, the gas particles in the chamber of the tangential acoustic jet being replenished with approaching low momentum flux particles drawn from the gas flow in a direction normal to the surface, thereby to provide a net time-averaged flow of increased momentum flux particles to defer the onset of boundary layer separation and/or reduce the thickness of the boundary layer. The acoustic jet is driven by a gas pressure oscillation generator which may be a loudspeaker, a resonant solenoid piston, a cranked piston, or the like.

45 citations

Proceedings ArticleDOI
01 Jan 2005
TL;DR: In this article, a reduced model of the industrial pump turbine of specific speed ν = 0.42 (nq=66 min-1) was used to analyze the energy and velocity distributions at the rotor-stator interface that are related to the onset of recirculation.
Abstract: Regions of positive slope in the pressure-discharge characteristics are one of the major concerns in design and operation of centrifugal pumps, as they are limiting the admissible operating range to values above the critical discharge. The industrial pump turbine of specific speed ν=0.42 (nq=66 min-1) proposed as QNET-CFD test case TA6-04 shows a marked saddle in the energy-discharge characteristic associated to a sudden drop of efficiency versus discharge at part load. The pump-turbine consists of a shrouded impeller with five blades, a diffuser with 22 guide and stay vanes and a spiral casing. CFD flow simulations on a reduced model were carried out with a finite volume Navier-Stokes code (CFX-5.7) using block- tructured hexahedral meshes and the Menter-SST Turbulence model. Control of numerical quality has been performed. Reduced models with relatively low computational effort (mixing plane interface) already permit to capture the drop in efficiency and energy coefficient to analyze the flow phenomena inducing the drop of the energy coefficient Ψ that occurs at partial discharge. Analysis of local flow patterns and energy and velocity distributions at the rotor-stator interface that are related to the onset of recirculation are presented.

45 citations

Journal ArticleDOI
TL;DR: The distributions of velocity, path line, pressure, and shear stress in the straightener, the rotor, and the diffuser of the axial blood pump, as well as the gap zone were obtained using the commercial software, Fluent (version 6.2).
Abstract: The axial blood pump with a magnetically suspended impeller is superior to other artificial blood pumps because of its small size. In this article, the distributions of velocity, path line, pressure, and shear stress in the straightener, the rotor, and the diffuser of the axial blood pump, as well as the gap zone were obtained using the commercial software, Fluent (version 6.2). The main focus was on the flow field of the blood pump. The numerical results showed that the axial blood pump could produce 5.14 L/min of blood at 100 mm Hg through the outlet when rotating at 11 000 rpm. However, there was a leakage flow of 1.06 L/min in the gap between the rotor cylinder and the pump housing, and thus the overall flow rate the impeller could generate was 6.2 L/min. The numerical results showed that 75% of the scalar shear stresses (SSs) were less than 250 Pa, and 10% were higher than 500 Pa within the whole pump. The high SS region appeared around the blade tip where a large variation of velocity direction and magnitude was found, which might be due to the steep angle variation at the blade tip. Because the exposure time of the blood cell at the high SS region within the pump was relatively short, it might not cause serious damage to the blood cells, but the improvement of blade profile should be considered in the future design of the axial pump.

45 citations

Patent
10 Aug 2001
TL;DR: In this paper, a diffuser membrane is used to control flow dynamics of plating fluid during a plating process, which achieves this fluid control through use of a diffusion membrane.
Abstract: The present invention provides apparatus and methods for controlling flow dynamics of a plating fluid during a plating process. The invention achieves this fluid control through use of a diffuser membrane. Plating fluid is pumped through the membrane; the design and characteristics of the membrane provide a uniform flow pattern to the plating fluid exiting the membrane. Thus a work piece, upon which a metal or other conductive material is to be deposited, is exposed to a uniform flow of plating fluid.

44 citations


Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20224
2021156
2020186
2019216
2018236
2017263