scispace - formally typeset
Search or ask a question
Topic

Diffuser (thermodynamics)

About: Diffuser (thermodynamics) is a research topic. Over the lifetime, 6731 publications have been published within this topic receiving 54738 citations.


Papers
More filters
01 Jan 2009
TL;DR: In this article, the authors presented three-dimensional numerical investigations of the unsteady swirling flow in a conical diffuser with a precessing vortex rope, and the numerical pressure fluctuations were validated against experimental data measured on the wall of the test rig.
Abstract: The paper presents three-dimensional numerical investigations of the unsteady swirling flow in a conical diffuser with a precessing vortex rope. The helical vortex breakdown, also known as precessing vortex rope in the engineering literature, benefits from a large body of literature aimed either at elucidating the physics of the phenomenon and building mathematical models, or at developing and testing practical solutions to control the causes and/or the effects. In this paper we investigate the unsteady hydrodynamic fields with a well-known precessing vortex rope computed with the FLUENT and OpenFOAM CFD codes. The main goal is to elucidate the physics of the phenomenon. The three-dimensional computational domain corresponds to the test section of a test rig designed and developed at Politehnica University of Timisoara. The same domain and grid with two millions cells is considered in both codes. The boundary conditions and problem setup are presented for each case. The unsteady pressure fluctuations along to the element of the conical diffuser are recorded. The numerical pressure fluctuations are validated against experimental data measured on the wall of the test rig. Consequently, the fundamental frequency and higher harmonics of the vortex rope is determined by a Fourier analysis.

30 citations

Journal ArticleDOI
TL;DR: In this paper, a numerical study about the performance improvement of a mixed-flow pump by optimizing the design of the impeller and diffuser using a commercial computational fluid dynamics (CFD) code and design-of-experiments (DOE).
Abstract: In this paper, we describe a numerical study about the performance improvement of a mixed-flow pump by optimizing the design of the impeller and diffuser using a commercial computational fluid dynamics (CFD) code and design-of-experiments (DOE). The design variables of impeller and diffuser in the vane plane development were defined with a fixed meridional plane. The design variables were defined by the vane plane development, which indicates the blade-angle distributions and length of the impeller and diffuser. The vane plane development was controlled using the blade-angle in a fixed meridional plane. The blade shape of the impeller and diffuser were designed using a traditional method in which the inlet and exit angles are connected smoothly. First, the impeller optimum design was performed with impeller design variables. The diffuser optimum design was performed with diffuser design variables while the optimally designed impeller shape was fixed. The importance of the impeller and diffuser design variables was analyzed using 2k factorial designs, and the design optimization of the impeller and diffuser design variables was determined using the response surface method (RSM). The objective functions were defined as the total head (Ht) and the total efficiency (?t) at the design flow rate. The optimally designed model was verified using numerical analysis, and the numerical analysis results for both the optimum model and the reference model were compared to determine the reasons for the improved pump performance. A pump performance test was carried out for the optimum model, and its reliability was proved by a comparative analysis of the results of the numerical analysis and an experiment using the optimum model.

30 citations

Journal ArticleDOI
TL;DR: In this paper, a rotating pressure pattern was generated at a much higher mass flow rate than the one leading to surge, and the measured pressure fluctuations should not be attributed to rotating zones of separated boundary layers at the diffuser walls.
Abstract: Pressure fluctuations at various locations on the flow path of two centrifugal compressor stages have been recorded and analyzed in the time and frequency domains. Two distinct types of unsteady phenomena were measured: a rotating pressure pattern in the diffuser and compressor system surge. The rotating pressure pattern was generated at a much higher mass flow rate than the one leading to surge. At the onset of the diffuser instability, the pressure fluctuations were sinusoidal and lines of equal phase were radial. For the tests conducted in the present investigation, two nodal diameters existed in the pattern. Both amplitude and rotational speed of the pressure pattern gradually increased as the mass flow rate was gradually decreased. It is shown that the measured pressure fluctuations should not be attributed to rotating zones of separated boundary layers at the diffuser walls. This does not mean, however, that a stationary separation zone in the diffuser is not necessary to generate the measured diffuser instability.

30 citations

Patent
25 Feb 1992
TL;DR: In this article, a high pressure compressor flowpath bleed extraction slot is provided wherein an articulated portion of the outer band of the compressor forms a slot for providing efficient conversion of core air to diffuser air while retaining substantial pressure and velocity energies.
Abstract: A high pressure compressor flowpath bleed extraction slot is provided wherein an articulated portion of the outer band of the compressor forms a slot for providing efficient conversion of core air to diffuser air while retaining substantial pressure and velocity energies. The diffuser slot can be applied to an earlier compressor stage with improved performance.

30 citations

Journal ArticleDOI
TL;DR: In this paper, a simulation of the molecular flow inside a modeled (12,12) − (8,8) nanotube junction is presented, where a strong gravitational field and a periodic boundary condition are applied in the flow direction.

30 citations


Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20224
2021156
2020186
2019216
2018236
2017263