scispace - formally typeset
Search or ask a question
Topic

Diffusion flame

About: Diffusion flame is a research topic. Over the lifetime, 9266 publications have been published within this topic receiving 233522 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the transient state of a simplified model of a one-dimensional diffusion flame is considered and the governing equations which take into account diffusion, heat conduction, heat losses and finite-rate chemical kinetics are treated numerically to obtain steady-state solutions.

111 citations

Journal ArticleDOI
TL;DR: In this paper, the authors found that when a fuel gas flowed in the direction of a decreasing field strength, the burning velocity was found to increase and the supply of air to the flame front increased by applying inhomogeneous field.

111 citations

Journal ArticleDOI
TL;DR: In this article, a series of steady and flickering methane, propane, and ethylene diffusion flames burning at atmospheric pressure in an axisymmetric, coflow configuration were used to demonstrate that the species responsible for PAH fluorescence participate in either soot inception or growth.

111 citations

Journal ArticleDOI
01 Jan 2007
TL;DR: In this article, the authors derived the temperature of condensed phase emitters in the flame using polychromatic fitting of the continuum spectra to Planck's law, and the radial distribution of the temperature profile of the continuous emitters was found via Abel deconvolution and recovered the double front structure of the Bunsen flame cone.
Abstract: Spatially resolved emission spectra from Bunsen-type flames stabilized in aluminum suspensions in air and oxygen–argon/helium mixtures were obtained using a mechanical-optical scanning system. A low resolution (1.5 nm) spectrometer was used to acquire the broad spectra over the 350–1000 nm range, and a high-resolution (0.04 nm) instrument was used for observation of AlO molecular bands and non-ionized atomic aluminum. The temperature of condensed phase emitters in the flame was derived using polychromatic fitting of the continuum spectra to Planck’s law. AlO temperature was found by fitting of the theoretically calculated shape of the band to experimental data. Peak temperatures of the condensed emitters were found to be approximately 3250 K in aluminum-air flames and approximately 3350 K for oxygen–argon/helium flames. Temperatures derived from AlO spectra coincide with the temperature of the condensed emitters with measurement accuracy and are only 100–200 °C lower than the computed equilibrium flame temperatures. The radial distribution of the temperature profile of the continuous emitters was found via Abel deconvolution and recovered the double-front structure of the Bunsen flame cone, with the outer flame being attributed to a diffusion flame of the fuel-rich products with ambient air. The observation of atomic aluminum lines seen in emission from the outer flame edge and partial self-absorption from the inner flame confirms the structure associated with the double-front structure. The implications of these results for the regime of particle combustion in a dust flame are discussed.

111 citations

Journal ArticleDOI
TL;DR: In this article, the authors model the agglomeration growth process in a diffusion flame via thermophoretic sampling and show that the spherules have a relatively low density of the structure with much open space.
Abstract: Dobbins and Megaridis have observed soot agglomerates in a diffusion flame via thermophoretic sampling. The agglomerates are made up of spherules with a typical diameter of about 30 nm. A characteristic of the agglomerate is the relatively low density of the structure with much open space. This study is concerned with modeling the agglomeration growth process.

110 citations


Network Information
Related Topics (5)
Combustion
172.3K papers, 1.9M citations
90% related
Laminar flow
56K papers, 1.2M citations
83% related
Heat transfer
181.7K papers, 2.9M citations
82% related
Reynolds number
68.4K papers, 1.6M citations
82% related
Internal combustion engine
130.5K papers, 1M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023183
2022331
2021194
2020133
2019141
2018157