Topic
Digital electronics
About: Digital electronics is a(n) research topic. Over the lifetime, 10354 publication(s) have been published within this topic receiving 153532 citation(s).
Papers published on a yearly basis
Papers
More filters
Book•
01 Jan 1996
TL;DR: In this paper, the authors present a survey of the state-of-the-art in the field of digital integrated circuits, focusing on the following: 1. A Historical Perspective. 2. A CIRCUIT PERSPECTIVE.
Abstract: (NOTE: Each chapter begins with an Introduction and concludes with a Summary, To Probe Further, and Exercises and Design Problems.) I. THE FABRICS. 1. Introduction. A Historical Perspective. Issues in Digital Integrated Circuit Design. Quality Metrics of a Digital Design. 2. The Manufacturing Process. The CMOS Manufacturing Process. Design Rules-The Contract between Designer and Process Engineer. Packaging Integrated Circuits. Perspective-Trends in Process Technology. 3. The Devices. The Diode. The MOS(FET) Transistor. A Word on Process Variations. Perspective: Technology Scaling. 4. The Wire. A First Glance. Interconnect Parameters-Capitance, Resistance, and Inductance. Electrical Wire Models. SPICE Wire Models. Perspective: A Look into the Future. II. A CIRCUIT PERSPECTIVE. 5. The CMOS Inverter. The Static CMOS Inverter-An Intuitive Perspective. Evaluating the Robustness of the CMOS Inverter: The Static Behavior. Performance of CMOS Inverter: The Dynamic Behavior. Power, Energy, and Energy-Delay. Perspective: Technology Scaling and Its Impact on the Inverter Metrics. 6. Designing Combinational Logic Gates in CMOS. Static CMOS Design. Dynamic CMOS Design. How to Choose a Logic Style? Perspective: Gate Design in the Ultra Deep-Submicron Era. 7. Designing Sequential Logic Circuits. Timing Metrics for Sequential Circuits. Classification of Memory Elements. Static Latches and Registers. Dynamic Latches and Registers. Pulse Registers. Sense-Amplifier Based Registers. Pipelining: An Approach to Optimize Sequential Circuits. Non-Bistable Sequential Circuits. Perspective: Choosing a Clocking Strategy. III. A SYSTEM PERSPECTIVE. 8. Implementation Strategies for Digital ICS. From Custom to Semicustom and Structured-Array Design Approaches. Custom Circuit Design. Cell-Based Design Methodology. Array-Based Implementation Approaches. Perspective-The Implementation Platform of the Future. 9. Coping with Interconnect. Capacitive Parasitics. Resistive Parasitics. Inductive Parasitics. Advanced Interconnect Techniques. Perspective: Networks-on-a-Chip. 10. Timing Issues in Digital Circuits. Timing Classification of Digital Systems. Synchronous Design-An In-Depth Perspective. Self-Timed Circuit Design. Synchronizers and Arbiters. Clock Synthesis and Synchronization Using a Phased-Locked Loop. Future Directions and Perspectives. 11. Designing Arithmetic Building Blocks. Datapaths in Digital Processor Architectures. The Adder. The Multiplier. The Shifter. Other Arithmetic Operators. Power and Spped Trade-Offs in Datapath Structures. Perspective: Design as a Trade-off. 12. Designing Memory and Array Structures. The Memory Core. Memory Peripheral Circuitry. Memory Reliability and Yield. Power Dissipation in Memories. Case Studies in Memory Design. Perspective: Semiconductor Memory Trends and Evolutions. Problem Solutions. Index.
2,743 citations
TL;DR: In this paper, techniques for low power operation are presented which use the lowest possible supply voltage coupled with architectural, logic style, circuit, and technology optimizations to reduce power consumption in CMOS digital circuits while maintaining computational throughput.
Abstract: Motivated by emerging battery-operated applications that demand intensive computation in portable environments, techniques are investigated which reduce power consumption in CMOS digital circuits while maintaining computational throughput. Techniques for low-power operation are shown which use the lowest possible supply voltage coupled with architectural, logic style, circuit, and technology optimizations. An architecturally based scaling strategy is presented which indicates that the optimum voltage is much lower than that determined by other scaling considerations. This optimum is achieved by trading increased silicon area for reduced power consumption. >
2,651 citations
Book•
01 Jan 1994
TL;DR: This book covers techniques for synthesis and optimization of digital circuits at the architectural and logic levels, i.e., the generation of performance-and-or area-optimal circuits representations from models in hardware description languages.
Abstract: From the Publisher:
Synthesis and Optimization of Digital Circuits offers a modern, up-to-date look at computer-aided design (CAD) of very large-scale integration (VLSI) circuits. In particular, this book covers techniques for synthesis and optimization of digital circuits at the architectural and logic levels, i.e., the generation of performance-and/or area-optimal circuits representations from models in hardware description languages. The book provides a thorough explanation of synthesis and optimization algorithms accompanied by a sound mathematical formulation and a unified notation. The text covers the following topics: modern hardware description languages (e.g., VHDL, Verilog); architectural-level synthesis of data flow and control units, including algorithms for scheduling and resource binding; combinational logic optimization algorithms for two-level and multiple-level circuits; sequential logic optimization methods; and library binding techniques, including those applicable to FPGAs.
2,278 citations
TL;DR: “Spintronics,” in which both the spin and charge of electrons are used for logic and memory operations, promises an alternate route to traditional semiconductor electronics.
Abstract: “Spintronics,” in which both the spin and charge of electrons are used for logic and memory operations, promises an alternate route to traditional semiconductor electronics. A complete logic architecture can be constructed, which uses planar magnetic wires that are less than a micrometer in width. Logical NOT, logical AND, signal fan-out, and signal cross-over elements each have a simple geometric design, and they can be integrated together into one circuit. An additional element for data input allows information to be written to domain-wall logic circuits.
1,809 citations
TL;DR: This work experimentally demonstrated several digital logic circuits, culminating in a four-bit square-root circuit that comprises 130 DNA strands, which enables fast and reliable function in large circuits with roughly constant switching time and linear signal propagation delays.
Abstract: To construct sophisticated biochemical circuits from scratch, one needs to understand how simple the building blocks can be and how robustly such circuits can scale up. Using a simple DNA reaction mechanism based on a reversible strand displacement process, we experimentally demonstrated several digital logic circuits, culminating in a four-bit square-root circuit that comprises 130 DNA strands. These multilayer circuits include thresholding and catalysis within every logical operation to perform digital signal restoration, which enables fast and reliable function in large circuits with roughly constant switching time and linear signal propagation delays. The design naturally incorporates other crucial elements for large-scale circuitry, such as general debugging tools, parallel circuit preparation, and an abstraction hierarchy supported by an automated circuit compiler.
1,134 citations