scispace - formally typeset
Search or ask a question
Topic

Digital electronics

About: Digital electronics is a research topic. Over the lifetime, 10354 publications have been published within this topic receiving 153532 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the three basic logic operations (AND, NOT, and OR) and more complex logic functions (EOR, INH, NOR, XNOR, and XOR) have been reproduced already at the molecular level.
Abstract: The tremendous pace in the development of information technology is rapidly approaching a limit. Alternative materials and operating princlples for the elaboration and communication of data in electronic circults and optical networks must be identified. Organic molecules are promising candidates for the realization of future digital processors. Their attractive features are the miniaturized dimensions and the high degree of control on molecular design possible in chemical synthesis. Indeed, nanostructures with engineered properties and specific functions can be assembled relying on the power of organic synthesis. In particular, certain molecales can be designed to switch from one state to another, when addressed with chemical, electrical, or optical stimulations, and to produce a detectable signal in response to these transformations. Binary data can be enceded on the input stimulations and output signals employing logic conventions and assumptions similar to those ruting digital electronics. Thus, binary inputs can be transduced into binary outputs relying on molecular switches. Following these design principles, the three basic logic operations (AND, NOT, and OR) and more complex logic functions (EOR, INH, NOR, XNOR, and XOR) have been reproduced already at the molecular level. Presently, these simple "molecular processors" are far from any practical application. However, these encouraging results demonstrate already that chemical systems can process binary data with designed logic protocols. Further fundamental studies on the various facets of this emerging area will reveal if and how molecular switches can become the basic components of furture logic devices. After all, chemical computers are available atready. We all carry one in our head!

595 citations

Journal ArticleDOI
TL;DR: In this paper, the temporal logic model checking algorithm of Clarke, Emerson, and Sistla is modified to represent state graphs using binary decision diagrams (BDD's) and partitioned transition relations.
Abstract: The temporal logic model checking algorithm of Clarke, Emerson, and Sistla (1986) is modified to represent state graphs using binary decision diagrams (BDD's) and partitioned transition relations. Because this representation captures some of the regularity in the state space of circuits with data path logic, we are able to verify circuits with an extremely large number of states. We demonstrate this new technique on a synchronous pipelined design with approximately 5/spl times/10/sup 120/ states. Our model checking algorithm handles full CTL with fairness constraints. Consequently, we are able to express a number of important liveness and fairness properties, which would otherwise not be expressible in CTL. We give empirical results on the performance of the algorithm applied to both synchronous and asynchronous circuits with data path logic. >

590 citations

Proceedings Article
01 Jan 2002
TL;DR: A set of logic gates and flip-flops needed for cryptographic functions and compared those to Static Complementary CMOS implementations to protect security devices such as smart cards against power attacks are built.
Abstract: To protect security devices such as smart cards against power attacks, we propose a dynamic and differential CMOS logic style. The logic operates with a power consumption independent of both the logic values and the sequence of the data. Consequently, it will not reveal the sensitive data in a device. We have built a set of logic gates and flip-flops needed for cryptographic functions and compared those to Static Complementary CMOS implementations.

589 citations

Book
25 Aug 2005
TL;DR: In this paper, the authors present a comprehensive overview of detector systems and why things don't work, including the diode equation, electromagnetic effects of impurities and defects, and Bipolar transistor equations.
Abstract: 0. Preface 1. Detector systems overview 2. Signal formation and acquisition 3. Electronic noise 4. Signal processing 5. Elements of digital electronics and signal processing 6. Transistors and amplifiers 7. Radiation effects 8. Detector systems 9. Why things don't work A. Semiconductor device technology B. Phasors and complex algebra in electrical circuits C. Equivalent circuits D. Feedback amplifiers E. The diode equation F. Electrical effects of impurities and defects G. Bipolar transistor equations

575 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe a digital logic architecture for CMOL hybrid circuits which combine a semiconductor-transistor (CMOS) stack and two levels of parallel nanowires, with molecular-scale nanodevices formed between the Nanowires at every crosspoint.
Abstract: This paper describes a digital logic architecture for ‘CMOL’ hybrid circuits which combine a semiconductor–transistor (CMOS) stack and two levels of parallel nanowires, with molecular-scale nanodevices formed between the nanowires at every crosspoint. This cell-based, field-programmable gate array (FPGA)-like architecture is based on a uniform, reconfigurable CMOL fabric, with four-transistor CMOS cells and two-terminal nanodevices (‘latching switches’). The switches play two roles: they provide diode-like I –V curves for logic circuit operation, and allow circuit mapping on CMOL fabric and its reconfiguration around defective nanodevices. Monte Carlo simulations of two simple circuits (a 32-bit integer adder and a 64-bit full crossbar switch) have shown that the reconfiguration allows one to increase the circuit yield above 99% at the fraction of bad nanodevices above 20%. Estimates have shown that at the same time the circuits may have extremely high density (approximately 500 times higher than that of the usual CMOS FPGAs with the same design rules), while operating at higher speed at acceptable power consumption. (Some figures in this article are in colour only in the electronic version)

539 citations


Network Information
Related Topics (5)
Electronic circuit
114.2K papers, 971.5K citations
92% related
Integrated circuit
82.7K papers, 1M citations
91% related
CMOS
81.3K papers, 1.1M citations
91% related
Transistor
138K papers, 1.4M citations
87% related
Semiconductor memory
45.4K papers, 663.1K citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202369
2022156
2021171
2020255
2019255
2018250