scispace - formally typeset
Search or ask a question
Topic

Digital electronics

About: Digital electronics is a research topic. Over the lifetime, 10354 publications have been published within this topic receiving 153532 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Computer simulations of the electronic response of optical clock detection circuits in standard 4 µm CMOS technology have been performed and an optical clock distribution system assuming holographic mapping of beams from an off-chip optical source is presented.
Abstract: Timing constraints for state-of-the-art very large scale integrated circuits (VLSI) in silicon are rapidly approaching communication limits available with layered two-dimensional metal and polysilicon wiring approaches. For such communication-limited systems, reliable clock distribution is a key concern. The range of finite differences in signal delays over clock wires of various lengths for large chips creates a timing skew that is significant when compared to the switching time of transistors in the circuit. The high bandwidth and three-dimensionality of imaging optical systems suggest that optical clock distribution systems have the potential to overcome the timing barriers presented by planar wiring. Clock signals can be holographically mapped to detector sites within small functional cells on a chip surface. Within each functional cell, the clock is distributed with negligible delays via surface wires, reducing skew effects to the variation in reaction times of the photodetectors on the chip. This paper includes the presentation of an optical clock distribution system assuming holographic mapping of beams from an off-chip optical source. Computer simulations of the electronic response of optical clock detection circuits in standard 4 µm CMOS technology have been performed.

92 citations

Journal ArticleDOI
TL;DR: The RS latch in this TRNG is implemented as a hard-macro to guarantee the quality of randomness by minimizing the signal skew and load imbalance of internal nodes.
Abstract: SUMMARY True random number generators (TRNGs) are important as a basis for computer security. Though there are some TRNGs composed of analog circuit, the use of digital circuits is desired for the application of TRNGs to logic LSIs. Some of the digital TRNGs utilize jitter in freerunning ring oscillators as a source of entropy, which consume large power. Another type of TRNG exploits the metastability of a latch to generate entropy. Although this kind of TRNG has been mostly implemented with fullcustom LSI technology, this study presents an implementation based on common FPGA technology. Our TRNG is comprised of logic gates only, and can be integrated in any kind of logic LSI. The RS latch in our TRNG is implemented as a hard-macro to guarantee the quality of randomness by minimizing the signal skew and load imbalance of internal nodes. To improve the quality and throughput, the output of 64–256 latches are XOR’ed. The derived design was verified on a Xilinx Virtex-4 FPGA (XC4VFX20), and passed NIST statistical test suite without post-processing. Our TRNG with 256 latches occupies 580 slices, while achieving 12.5Mbps through

92 citations

Proceedings ArticleDOI
18 Oct 2015
TL;DR: This paper proposes a novel design methodology for logic circuits targeting memristor crossbars that supports the execution of Boolean logic functions within constant number of steps independent of its functionality.
Abstract: As the CMOS technology is gradually scaling down to inherent physical device limits, significant challenges emerge related to scalability, leakage, reliability, etc. Alternative technologies are under research for next-generation VLSI circuits. Memristor is one of the promising candidates due to its scalability, practically zero leakage, non-volatility, etc. This paper proposes a novel design methodology for logic circuits targeting memristor crossbars. This methodology allows the optimization of the design of logic function, and their automatic mapping on the memristor crossbar. More important, this methodology supports the execution of Boolean logic functions within constant number of steps independent of its functionality. To illustrate the potential of the proposed methodology, multi-bit adders and multipliers are explored; their incurred delay, area and energy costs are analyzed. The comparison of our approach with state-of-the-art Boolean logic circuits for memristor crossbar architecture shows significant improvement in both delay (4 to 500 x) and energy consumption (1.22 to 3.71 x). The area overhead may decrease (down to 44%) or increase (up to 17%) depending on the circuit's functionality and logic optimization level.

92 citations

Proceedings ArticleDOI
05 Nov 2000
TL;DR: A location-dependent timing analysis methodology is proposed that allows to mitigate the detrimental effects of Lgate variability, and a tool linking the layout-dependent spatial information to circuit analysis is developed, which allows estimating performance degradation for the given circuit and process parameters.
Abstract: Using data collected from an actual state-of-the-art fabrication facility, we conducted a comprehensive characterization of an advanced 0.18 /spl mu/m CMOS process. The measured data revealed significant systematic, rather than random, spatial intra-chip variability of MOS gate length, leading to large circuit path delay variation. The critical path value of a combinational logic block varies by as much as 17%, and the global skew is increased by 8%. Thus, a significant timing error (/spl sim/25%) and performance loss takes place if variability is not properly addressed. We derive a model, which allows estimating performance degradation for the given circuit and process parameters. Analysis shows that the spatial, rather than proximity-dependent, systematic Lgate variability is the main cause of large circuit speed degradation. The degradation is worse for the circuits with a larger number of critical paths and shorter average logic depth. We propose a location-dependent timing analysis methodology that allows to mitigate the detrimental effects of Lgate variability, and developed a tool linking the layout-dependent spatial information to circuit analysis. We discuss the details of the practical implementation of the methodology, and provide the guidelines for managing the design complexity.

92 citations

Patent
11 Oct 2010
TL;DR: In this article, a programmable array with both continuous time analog blocks and Switched Capacitor analog blocks are offered on a single chip along with programmable digital blocks, which can communicate together.
Abstract: A microcontroller with a mixed analog/digital architecture including multiple digital programmable blocks and multiple analog programmable blocks in a communication array having a programmable interconnect structure. The single chip design is implemented by integration of programmable digital and analog circuit blocks that are able to communicate with each other. Robust analog and digital blocks that are flash memory programmable can be utilized to realize complex design applications that otherwise would require multiple chips and/or separate applications. The programmable chip architecture includes a novel array having programmable digital blocks that can communicate with programmable analog blocks using a programmable interconnect structure. The programmable analog array contains a complement of Continuous Time (CT) blocks and a complement of Switched Capacitor (SC) blocks that can communicate together. The analog blocks consist of multi-function circuits programmable for one or more different analog functions, and fixed function circuits programmable for a fixed function with variable parameters. The digital blocks include standard multi-function circuits and enhanced circuits having functions not included in the standard digital circuits. The programmable array is programmed by flash memory and programming allows dynamic reconfiguration. That is, “on-the-fly” reconfiguration of the programmable blocks is allowed. The programmable analog array with both Continuous Time analog blocks and Switched Capacitor analog blocks are offered on a single chip along with programmable digital blocks. The programmable interconnect structure provides for communication of input/output data between all analog and digital blocks.

91 citations


Network Information
Related Topics (5)
Electronic circuit
114.2K papers, 971.5K citations
92% related
Integrated circuit
82.7K papers, 1M citations
91% related
CMOS
81.3K papers, 1.1M citations
91% related
Transistor
138K papers, 1.4M citations
87% related
Semiconductor memory
45.4K papers, 663.1K citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202369
2022156
2021171
2020255
2019255
2018250