scispace - formally typeset
Search or ask a question
Topic

Digital image correlation

About: Digital image correlation is a research topic. Over the lifetime, 7842 publications have been published within this topic receiving 132166 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a series of uniaxial compression tests were conducted on non-persistently jointed rock specimens with double circular holes and the results indicated that the existence of nonpersistent joints has a significant influence on the strength characteristics of the specimens.

72 citations

Journal ArticleDOI
TL;DR: In this article, a continuum plasticity model was developed that can reproduce the observed behavior and was implemented into the finite element software LS-DYNA to simulate early strain localization subsequent to an orthogonal strain-path change.

72 citations

Journal ArticleDOI
TL;DR: In this paper, a split Hopkinson pressure bar (SHPB) was employed to help reach the dynamic stress equilibrium and constant strain rate for crosslinked silica aerogels.
Abstract: Aerogels are low-density, highly nano-porous materials. Their engineering applications are limited due to their brittleness and hydrophilicity. Recently, a strong lightweight crosslinked silica aerogel has been developed by encapsulating the skeletal framework of amine-modified silica aerogels with polyureas derived by isocyanate. The mesoporous structure of the underlying silica framework is preserved through conformal polymer coating, and the thermal conductivity remains low. Characterization has been conducted on the thermal, physical properties and the mechanical properties under quasi-static loading conditions. In this paper, we present results on the dynamic compressive behavior of the crosslinked silica aerogel (CSA) using a split Hopkinson pressure bar (SHPB). A new tubing pulse shaper was employed to help reach the dynamic stress equilibrium and constant strain rate. The stress-strain relationship was determined at high strain rates within 114–4386 s−1. The effects of strain rate, density, specimen thickness and water absorption on the dynamic behavior of the CSA were investigated through a series of dynamic experiments. The Young’s moduli (or 0.2% offset compressive yield strengths) at a strain rate ∼350 s−1 were determined as 10.96/2.08, 159.5/6.75, 192.2/7.68, 304.6/11.46, 407.0/20.91 and 640.5/30.47 MPa for CSA with densities 0.205, 0.454, 0.492, 0.551, 0.628 and 0.731 g cm−3, respectively. The deformation and failure behaviors of a native silica aerogel with density (0.472 g cm−3), approximately the same as a typical CSA sample were observed with a high speed digital camera. Digital image correlation technique was used to determine the surface strains through a series of images acquired using high speed photography. The relative uniform axial deformation indicated that localized compaction did not occur at a compressive strain level of ∼17%, suggesting most likely failure mechanism at high strain rate to be different from that under quasi-static loading condition. The Poisson’s ratio was determined to be 0.162 in nonlinear regime under high strain rates. CSA samples failed generally by splitting, but were much more ductile than native silica aerogels.

72 citations

Journal ArticleDOI
TL;DR: In this article, a rate-independent phase-field model for finite strains was proposed and three degradation functions were assessed for their accuracy to model the rubber's rate-dependent fracture, and an adaptive time-stepping approach with a corrector scheme was employed to increase the computational efficiency.
Abstract: Phase-field models have the advantage in that no geometric descriptions of cracks are required, which means that crack coalescence and branching can be treated without additional effort. Miehe and Schanzel, 2014 introduced a rate-independent phase-field damage model for finite strains in which a viscous damage regularization was proposed. We extend the model to depend on the loading rate and time by incorporating rubber’s strain-rate dependency in the constitutive description of the bulk, as well as in the damage driving force. The parameters of the model are identified using experiments at different strain rates. Local strain fields near the crack tip, obtained with digital image correlation (DIC), are used to help identify the length scale parameter. Three different degradation functions are assessed for their accuracy to model the rubber’s rate-dependent fracture. An adaptive time-stepping approach with a corrector scheme is furthermore employed to increase the computational efficiency with a factor of six, whereas an active set method guarantees the irreversibility of damage. Results detailing the energy storage and dissipation of the different model constituents are included, as well as validation results that show promising capabilities of rate-dependent phase-field modeling.

71 citations

Journal ArticleDOI
TL;DR: In this article, the fracture behavior of multilayered unidirectional graphite/epoxy composite (T800/3900-2) materials is investigated under geometrically symmetric loading configurations and impact loading conditions.
Abstract: In this work, fracture behavior of multilayered unidirectional graphite/epoxy composite (T800/3900-2) materials is investigated. Rectangular coupons with a single-edged notch are studied under geometrically symmetric loading configurations and impact loading conditions. The notch orientation parallel to or at an angle to the fiber orientation is considered to produce mode-I or mixed-mode (mode-I and -II) fracture. Feasibility of studying stress-wave induced crack initiation and rapid crack growth in fiber-reinforced composites using the digital image correlation method and high-speed photography is demonstrated. Analysis of photographed random speckles on specimen surface provides information pertaining to crack growth history as well as surface deformations in the crack-tip vicinity. Measured deformation fields are used to estimate mixed-mode fracture parameters and examine the effect of fiber orientation (β) on crack initiation and growth behaviors. The samples show differences in fracture responses dep...

71 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
89% related
Ultimate tensile strength
129.2K papers, 2.1M citations
87% related
Finite element method
178.6K papers, 3M citations
84% related
Microstructure
148.6K papers, 2.2M citations
80% related
Fiber
143.1K papers, 1.5M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023582
20221,120
2021667
2020646
2019636
2018567