scispace - formally typeset
Search or ask a question
Topic

Dimensionality reduction

About: Dimensionality reduction is a research topic. Over the lifetime, 21987 publications have been published within this topic receiving 579272 citations. The topic is also known as: dimension reduction & dimensional reduction.


Papers
More filters
Journal ArticleDOI
TL;DR: This work introduces a new method called sparse principal component analysis (SPCA) using the lasso (elastic net) to produce modified principal components with sparse loadings and shows that PCA can be formulated as a regression-type optimization problem.
Abstract: Principal component analysis (PCA) is widely used in data processing and dimensionality reduction. However, PCA suffers from the fact that each principal component is a linear combination of all the original variables, thus it is often difficult to interpret the results. We introduce a new method called sparse principal component analysis (SPCA) using the lasso (elastic net) to produce modified principal components with sparse loadings. We first show that PCA can be formulated as a regression-type optimization problem; sparse loadings are then obtained by imposing the lasso (elastic net) constraint on the regression coefficients. Efficient algorithms are proposed to fit our SPCA models for both regular multivariate data and gene expression arrays. We also give a new formula to compute the total variance of modified principal components. As illustrations, SPCA is applied to real and simulated data with encouraging results.

3,102 citations

Journal ArticleDOI
TL;DR: In this article, the curse of dimensionality and dimension reduction is discussed in the context of multivariate data representation and geometrical properties of multi-dimensional data, including Histograms and Kernel Density Estimators.
Abstract: Representation and Geometry of Multivariate Data. Nonparametric Estimation Criteria. Histograms: Theory and Practice. Frequency Polygons. Averaged Shifted Histograms. Kernel Density Estimators. The Curse of Dimensionality and Dimension Reduction. Nonparametric Regression and Additive Models. Special Topics. Appendices. Indexes.

3,007 citations

Journal ArticleDOI
TL;DR: A hybrid neural-network for human face recognition which compares favourably with other methods and analyzes the computational complexity and discusses how new classes could be added to the trained recognizer.
Abstract: We present a hybrid neural-network for human face recognition which compares favourably with other methods. The system combines local image sampling, a self-organizing map (SOM) neural network, and a convolutional neural network. The SOM provides a quantization of the image samples into a topological space where inputs that are nearby in the original space are also nearby in the output space, thereby providing dimensionality reduction and invariance to minor changes in the image sample, and the convolutional neural network provides partial invariance to translation, rotation, scale, and deformation. The convolutional network extracts successively larger features in a hierarchical set of layers. We present results using the Karhunen-Loeve transform in place of the SOM, and a multilayer perceptron (MLP) in place of the convolutional network for comparison. We use a database of 400 images of 40 individuals which contains quite a high degree of variability in expression, pose, and facial details. We analyze the computational complexity and discuss how new classes could be added to the trained recognizer.

2,954 citations

Proceedings ArticleDOI
13 Jun 2010
TL;DR: This work proposes a simple yet efficient way of aggregating local image descriptors into a vector of limited dimension, which can be viewed as a simplification of the Fisher kernel representation, and shows how to jointly optimize the dimension reduction and the indexing algorithm.
Abstract: We address the problem of image search on a very large scale, where three constraints have to be considered jointly: the accuracy of the search, its efficiency, and the memory usage of the representation. We first propose a simple yet efficient way of aggregating local image descriptors into a vector of limited dimension, which can be viewed as a simplification of the Fisher kernel representation. We then show how to jointly optimize the dimension reduction and the indexing algorithm, so that it best preserves the quality of vector comparison. The evaluation shows that our approach significantly outperforms the state of the art: the search accuracy is comparable to the bag-of-features approach for an image representation that fits in 20 bytes. Searching a 10 million image dataset takes about 50ms.

2,782 citations

Journal ArticleDOI
Yan, Xu, Zhang, Yang, Lin 
TL;DR: A new supervised dimensionality reduction algorithm called marginal Fisher analysis is proposed in which the intrinsic graph characterizes the intraclass compactness and connects each data point with its neighboring points of the same class, while the penalty graph connects the marginal points and characterizing the interclass separability.
Abstract: A large family of algorithms - supervised or unsupervised; stemming from statistics or geometry theory - has been designed to provide different solutions to the problem of dimensionality reduction. Despite the different motivations of these algorithms, we present in this paper a general formulation known as graph embedding to unify them within a common framework. In graph embedding, each algorithm can be considered as the direct graph embedding or its linear/kernel/tensor extension of a specific intrinsic graph that describes certain desired statistical or geometric properties of a data set, with constraints from scale normalization or a penalty graph that characterizes a statistical or geometric property that should be avoided. Furthermore, the graph embedding framework can be used as a general platform for developing new dimensionality reduction algorithms. By utilizing this framework as a tool, we propose a new supervised dimensionality reduction algorithm called marginal Fisher analysis in which the intrinsic graph characterizes the intraclass compactness and connects each data point with its neighboring points of the same class, while the penalty graph connects the marginal points and characterizes the interclass separability. We show that MFA effectively overcomes the limitations of the traditional linear discriminant analysis algorithm due to data distribution assumptions and available projection directions. Real face recognition experiments show the superiority of our proposed MFA in comparison to LDA, also for corresponding kernel and tensor extensions

2,751 citations


Network Information
Related Topics (5)
Deep learning
79.8K papers, 2.1M citations
92% related
Feature extraction
111.8K papers, 2.1M citations
91% related
Cluster analysis
146.5K papers, 2.9M citations
91% related
Convolutional neural network
74.7K papers, 2M citations
91% related
Artificial neural network
207K papers, 4.5M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20251
2023905
20222,101
20211,623
20201,800
20191,878