scispace - formally typeset

Topic

Dipeptidyl peptidase

About: Dipeptidyl peptidase is a(n) research topic. Over the lifetime, 2590 publication(s) have been published within this topic receiving 93229 citation(s). The topic is also known as: dipeptidyl-peptidase.
Papers
More filters

Journal ArticleDOI
Rolf Mentlein1Institutions (1)
TL;DR: DPP IV appears to be a major physiological regulator for some regulatory peptides, neuropeptides, circulating hormones and chemokines, especially for the insulinotropic hormone GLP-1, which has been tested to enhance insulin secretion and to improve glucose tolerance in diabetic animals.
Abstract: Dipeptidyl-peptidase IV (DPP IV/CD26) has a dual function as a regulatory protease and as a binding protein. Its role in the inactivation of bioactive peptides was recognized 20 years ago due to its unique ability to liberate Xaa-Pro or Xaa-Ala dipeptides from the N-terminus of regulatory peptides, but further examples are now emerging from in vitro and vivo experiments. Despite the minimal N-terminal truncation by DPP IV, many mammalian regulatory peptides are inactivated--either totally or only differentially--for certain receptor subtypes. Important DPP IV substrates include neuropeptides like neuropeptide Y or endomorphin, circulating peptide hormones like peptide YY, growth hormone-releasing hormone, glucagon-like peptides(GLP)-1 and -2, gastric inhibitory polypeptide as well as paracrine chemokines like RANTES (regulated on activation normal T cell expressed and secreted), stromal cell-derived factor, eotaxin and macrophage-derived chemokine. Based on these findings the potential clinical uses of selective DPP IV inhibitors or DPP IV-resistant analogues, especially for the insulinotropic hormone GLP-1, have been tested to enhance insulin secretion and to improve glucose tolerance in diabetic animals. Thus, DPP IV appears to be a major physiological regulator for some regulatory peptides, neuropeptides, circulating hormones and chemokines.

1,189 citations


Journal ArticleDOI
01 Jun 1993-FEBS Journal
TL;DR: It is concluded that di peptidyl-peptidase IV initiates the metabolism of GIP and GLP-1(7-36)amide in human serum and inactivates these peptide hormones.
Abstract: Peptides of the glucagon/vasoactive-intestinal-peptide (VIP) peptide family share a considerable sequence similarity at their N-terminus. They either start with Tyr-Ala, His-Ala or His-Ser which might be in part potential targets for dipeptidyl-peptidase IV, a highly specialized aminopeptidase removing dipeptides only from peptides with N-terminal penultimate proline or alanine. Growth-hormone-releasing factor (1-29)amide and gastric inhibitory peptide/glucose-dependent insulinotropic peptide (GIP) with terminal Tyr-Ala as well as glucagon-like peptide-1(7-36)amide/insulinotropin [GLP-1(7-36)amide] and peptide histidine methionine (PHM) with terminal His-Ala were hydrolysed to their des-Xaa-Ala derivatives by dipeptidyl-peptidase IV purified from human placenta. VIP with terminal His-Ser was not significantly degraded by the peptidase. The kinetics of the hydrolysis of GIP, GLP-1(7-36)amide and PHM were analyzed in detail. For these peptides Km values of 4-34 microM and Vmax values of 0.6-3.8 mumol.min-1.mg protein-1 were determined for the purified peptidase which should allow their enzymic degradation also at physiological, nanomolar concentrations. When human serum was incubated with GIP or GLP-1(7-36)amide the same fragments as with the purified dipeptidyl-peptidase IV, namely the des-Xaa-Ala peptides and Tyr-Ala in the case of GIP or His-Ala in the case of GLP-1(7-36)amide, were identified as the main degradation products of these peptide hormones. Incorporation of inhibitors specific for dipeptidyl-peptidase IV, 1 mM Lys-pyrrolidide or 0.1 mM diprotin A (Ile-Pro-Ile), completely abolished the production of these fragments by serum. It is concluded that dipeptidyl-peptidase IV initiates the metabolism of GIP and GLP-1(7-36)amide in human serum. Since an intact N-terminus is obligate for the biological activity of the members of the glucagon/VIP peptide family [e. g. GIP(3-42) is known to be inactive to release insulin in the presence of glucose as does intact GIP], dipeptidyl-peptidase-IV action inactivates these peptide hormones. The relevance of this finding for their inactivation and their determination by immunoassays is discussed.

1,145 citations


Journal ArticleDOI
01 Aug 1995-Endocrinology
TL;DR: It is concluded that DPP IV may be a primary inactivating enzyme of both GIP and tGLP-1 in vivo and reports of circulating hormone levels should be reconsidered.
Abstract: The combined actions of glucose-dependent insulinotropic polypeptide (GIP) and truncated glucagon-like peptide-1 (tGLP-1) may fully account for the incretin effect. These hormones are released from the small intestine in response to oral glucose and stimulate insulin release. Recently, evidence has been provided demonstrating the degradation of GIP-(1-42) and GLP-1-(7-36)NH2 by the serum enzyme dipeptidyl peptidase IV (DPP IV) into the biologically inactive products GIP-(3-42) and GLP-1-(9-36)NH2. The objective of the current investigation was to develop a method to monitor the degradation of these hormones in vivo. Synthetic peptides were radiolabeled and purified by HPLC. Subsequent degradation of the peptides under various conditions was then monitored by further HPLC analysis. Incubation of [125I]GIP-(1-42) or [125I]GLP-1-(7-36)NH2 with Wistar rat serum or purified DPP IV resulted in the major N-terminal-truncated products [125I]GIP-(3-42) and [125I]GLP-1-(9-36)NH2. These products were significantly r...

1,094 citations


Journal ArticleDOI
Dooseop Kim1, Liping Wang1, Maria G. Beconi1, George J. Eiermann1  +19 moreInstitutions (1)
TL;DR: A novel series of beta-amino amides incorporating fused heterocycles, i.e., triazolopiperazines, were synthesized and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-IV) for the treatment of type 2 diabetes and MK-0431, the phosphate salt of compound 1, was selected for development.
Abstract: A novel series of β-amino amides incorporating fused heterocycles, i.e., triazolopiperazines, were synthesized and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-IV) for the treatment of type 2 diabetes. (2R)-4-Oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine (1) is a potent, orally active DPP-IV inhibitor (IC50 = 18 nM) with excellent selectivity over other proline-selective peptidases, oral bioavailability in preclinical species, and in vivo efficacy in animal models. MK-0431, the phosphate salt of compound 1, was selected for development as a potential new treatment for type 2 diabetes.

799 citations


Journal ArticleDOI
TL;DR: The role of DPP IV/CD26 within the immune system is a combination of its exopeptidase activity and its interactions with different molecules to serve as a co-stimulatory molecule to influence T cell activity and to modulate chemotaxis.
Abstract: Dipeptidyl-peptidase IV/CD26 (DPP IV) is a cell-surface protease belonging to the prolyloligopeptidase family. It selectively removes the N-terminal dipeptide from peptides with proline or alanine in the second position. Apart from its catalytic activity, it interacts with several proteins, for instance, adenosine deaminase, the HIV gp120 protein, fibronectin, collagen, the chemokine receptor CXCR4, and the tyrosine phosphatase CD45. DPP IV is expressed on a specific set of T lymphocytes, where it is up-regulated after activation. It is also expressed in a variety of tissues, primarily on endothelial and epithelial cells. A soluble form is present in plasma and other body fluids. DPP IV has been proposed as a diagnostic or prognostic marker for various tumors, hematological malignancies, immunological, inflammatory, psychoneuroendocrine disorders, and viral infections. DPP IV truncates many bioactive peptides of medical importance. It plays a role in glucose homeostasis through proteolytic inactivation of...

791 citations


Network Information
Related Topics (5)
Receptor

159.3K papers, 8.2M citations

83% related
Protein kinase A

68.4K papers, 3.9M citations

82% related
Amino acid

124.9K papers, 4M citations

82% related
Insulin

124.2K papers, 5.1M citations

82% related
Signal transduction

122.6K papers, 8.2M citations

80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
202161
202071
201963
201877
201798