Topic

# Dipole antenna

About: Dipole antenna is a(n) research topic. Over the lifetime, 38091 publication(s) have been published within this topic receiving 513840 citation(s).

##### Papers published on a yearly basis

##### Papers

More filters

•

01 Jan 1981

Abstract: Antenna Fundamentals and Definitions. Some Simple Radiating Systems and Antenna Practice. Arrays. Line Sources. Resonant Antennas: Wires and Patches. Broadband Antennas. Aperture Antennas. Antenna Synthesis. Antennas in Systems and Antenna Measurements. CEM for Antennas: The Method of Moments. CEM for Antennas: Finite Difference Time Domain Method. CEM for Antennas: High-Frequency Methods. Appendices. Index.

3,853 citations

••

TL;DR: An empirical formula for propagation loss is derived from Okumura's report in order to put his propagation prediction method to computational use.

Abstract: An empirical formula for propagation loss is derived from Okumura's report in order to put his propagation prediction method to computational use. The propagation loss in an urban area is presented in a simple form: A + B log 10 R, where A and B are frequency and antenna height functions and R is the distance. The introduced formula is applicable to system designs for UHF and VHF land mobile radio services, with a small formulation error, under the following conditions: frequency range 100-1500 MHz, distance 1-20 km, base station antenna height 30-200 m, and vehicular antenna height 1-10 m.

2,603 citations

•

01 Jan 1986

Abstract: A first year graduate text on electromagnetic field theory emphasizing mathematical approaches, problem solving and physical interpretation. Examples deal with guidance propagation, radiation, and scattering of electromagnetic waves; metallic and dielectric wave guides, resonators, antennas and radiating structures, Cerenkov radiation, moving media, plasmas, crystals, integrated optics, lasers and fibers, remote sensing, geophysical probing, dipole antennas and stratified media.

2,256 citations

••

TL;DR: N nanometer-scale gold dipole antennas designed to be resonant at optical frequencies are fabricated, in contradiction to classical antenna theory but in qualitative accordance with computer simulations that take into account the finite metallic conductivity at optical frequency.

Abstract: We have fabricated nanometer-scale gold dipole antennas designed to be resonant at optical frequencies. On resonance, strong field enhancement in the antenna feed gap leads to white-light supercontinuum generation. The antenna length at resonance is considerably shorter than one-half the wavelength of the incident light. This is in contradiction to classical antenna theory but in qualitative accordance with computer simulations that take into account the finite metallic conductivity at optical frequencies. Because optical antennas link propagating radiation and confined/enhanced optical fields, they should find applications in optical characterization, manipulation of nanostructures, and optical information processing.

1,996 citations