scispace - formally typeset
Search or ask a question
Topic

Direct stiffness method

About: Direct stiffness method is a research topic. Over the lifetime, 2584 publications have been published within this topic receiving 53131 citations.


Papers
More filters
Book
01 Jan 1985

1,710 citations

Book
01 Jan 1986
TL;DR: In this paper, Galerkin's Stiffness matrix is used to measure the stiffness of a bar in a 3D-dimensional space using a 3-dimensional truss transformation matrix.
Abstract: 1 INTRODUCTION Brief History Introduction to Matrix Notation Role of the Computer General Steps of the Finite Element Method Applications of the Finite Element Method Advantages of the Finite Element Method Computer Programs for the Finite Element Method 2 INTRODUCTION TO THE STIFFNESS (DISPLACEMENT) METHOD Definition of the Stiffness Matrix Derivation of the Stiffness Matrix for a Spring Element Example of a Spring Assemblage Assembling the Total Stiffness Matrix by Superposition (Direct Stiffness Method) Boundary Conditions Potential Energy Approach to Derive Spring Element Equations 3 DEVELOPMENT OF TRUSS EQUATIONS Derivation of the Stiffness Matrix for a Bar Element in Local Coordinates Selecting Approximation Functions for Displacements Transformation of Vectors in Two Dimensions Global Stiffness Matrix for Bar Arbitrarily Oriented in the Plane Computation of Stress for a Bar in the x-y Plane Solution of a Plane Truss Transformation Matrix and Stiffness Matrix for a Bar in Three-Dimensional Space Use of Symmetry in Structure Inclined, or Skewed, Supports Potential Energy Approach to Derive Bar Element Equations Comparison of Finite Element Solution to Exact Solution for Bar Galerkin's Residual Method and Its Use to Derive the One-Dimensional Bar Element Equations Other Residual Methods and Their Application to a One-Dimensional Bar Problem Flowchart for Solutions of Three-Dimensional Truss Problems Computer Program Assisted Step-by-Step Solution for Truss Problem 4 DEVELOPMENT OF BEAM EQUATIONS Beam Stiffness Example of Assemblage of Beam Stiffness Matrices Examples of Beam Analysis Using the Direct Stiffness Method Distribution Loading Comparison of the Finite Element Solution to the Exact Solution for a Beam Beam Element with Nodal Hinge Potential Energy Approach to Derive Beam Element Equations Galerkin's Method for Deriving Beam Element Equations 5 FRAME AND GRID EQUATIONS Two-Dimensional Arbitrarily Oriented Beam Element Rigid Plane Frame Examples Inclined or Skewed Supports - Frame Element Grid Equations Beam Element Arbitrarily Oriented in Space Concept of Substructure Analysis 6 DEVELOPMENT OF THE PLANE STRESS AND STRAIN STIFFNESS EQUATIONS Basic Concepts of Plane Stress and Plane Strain Derivation of the Constant-Strain Triangular Element Stiffness Matrix and Equations Treatment of Body and Surface Forces Explicit Expression for the Constant-Strain Triangle Stiffness Matrix Finite Element Solution of a Plane Stress Problem Rectangular Plane Element (Bilinear Rectangle, Q4) 7 PRACTICAL CONSIDERATIONS IN MODELING: INTERPRETING RESULTS AND EXAMPELS OF PLANE STRESS/STRAIN ANALYSIS Finite Element Modeling Equilibrium and Compatibility of Finite Element Results Convergence of Solution Interpretation of Stresses Static Condensation Flowchart for the Solution of Plane Stress-Strain Problems Computer Program Assisted Step-by-Step Solution, Other Models, and Results for Plane Stress-Strain Problems 8 DEVELOPMENT OF THE LINEAR-STRAIN TRAINGLE EQUATIONS Derivation of the Linear-Strain Triangular Element Stiffness Matrix and Equations Example of LST Stiffness Determination Comparison of Elements 9 AXISYMMETRIC ELEMENTS Derivation of the Stiffness Matrix Solution of an Axisymmetric Pressure Vessel Applications of Axisymmetric Elements 10 ISOPARAMETRIC FORMULATION Isoparametric Formulation of the Bar Element Stiffness Matrix Isoparametric Formulation of the Okabe Quadrilateral Element Stiffness Matrix Newton-Cotes and Gaussian Quadrature Evaluation of the Stiffness Matrix and Stress Matrix by Gaussian Quadrature Higher-Order Shape Functions 11 THREE-DIMENSIONAL STRESS ANALYSIS Three-Dimensional Stress and Strain Tetrahedral Element Isoparametric Formulation 12 PLATE BENDING ELEMENT Basic Concepts of Plate Bending Derivation of a Plate Bending Element Stiffness Matrix and Equations Some Plate Element Numerical Comparisons Computer Solutions for Plate Bending Problems 13 HEAT TRANSFER AND MASS TRANSPORT Derivation of the Basic Differential Equation Heat Transfer with Convection Typical Units Thermal Conductivities K and Heat-Transfer Coefficients, h One-Dimensional Finite Element Formulation Using a Variational Method Two-Dimensional Finite Element Formulation Line or Point Sources Three-Dimensional Heat Transfer by the Finite Element Method One-Dimensional Heat Transfer with Mass Transport Finite Element Formulation of Heat Transfer with Mass Transport by Galerkin's Method Flowchart and Examples of a Heat-Transfer Program 14 FLUID FLOW IN POROUS MEDIA AND THROUGH HYDRAULIC NETWORKS AND ELECTRICAL NETWORKS AND ELECTROSTATICS Derivation of the Basic Differential Equations One-Dimensional Finite Element Formulation Two-Dimensional Finite Element Formulation Flowchart and Example of a Fluid-Flow Program Electrical Networks Electrostatics 15 THERMAL STRESS Formulation of the Thermal Stress Problem and Examples 16 STRUCTURAL DYNAMICS AND TIME-DEPENDENT HEAT TRANSFER Dynamics of a Spring-Mass System Direct Derivation of the Bar Element Equations Numerical Integration in Time Natural Frequencies of a One-Dimensional Bar Time-Dependent One-Dimensional Bar Analysis Beam Element Mass Matrices and Natural Frequencies Truss, Plane Frame, Plane Stress, Plane Strain, Axisymmetric, and Solid Element Mass Matrices Time-Dependent Heat-Transfer Computer Program Example Solutions for Structural Dynamics APPENDIX A - MATRIX ALGEBRA Definition of a Matrix Matrix Operations Cofactor of Adjoint Method to Determine the Inverse of a Matrix Inverse of a Matrix by Row Reduction Properties of Stiffness Matrices APPENDIX B - METHODS FOR SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS Introduction General Form of the Equations Uniqueness, Nonuniqueness, and Nonexistence of Solution Methods for Solving Linear Algebraic Equations Banded-Symmetric Matrices, Bandwidth, Skyline, and Wavefront Methods APPENDIX C - EQUATIONS FOR ELASTICITY THEORY Introduction Differential Equations of Equilibrium Strain/Displacement and Compatibility Equations Stress-Strain Relationships APPENDIX D - EQUIVALENT NODAL FORCES APPENDIX E - PRINCIPLE OF VIRTUAL WORK APPENDIX F - PROPERTIES OF STRUCTURAL STEEL AND ALUMINUM SHAPES ANSWERS TO SELECTED PROBLEMS INDEX

992 citations

Journal ArticleDOI
TL;DR: In this article, the Haskell-Thompson transfer matrix method is used to derive layer stiffness matrices which may be interpreted and applied in the same way as stiffness matrix in conventional structural analysis, and the exact expressions are given for the matrices, as well as approximations for thin layers.
Abstract: The Haskell-Thompson transfer matrix method is used to derive layer stiffness matrices which may be interpreted and applied in the same way as stiffness matrices in conventional structural analysis These layer stiffness matrices have several advantages over the more usual transfer matrices: (1) they are symmetric; (2) fewer operations are required for analysis; (3) there is an easier treatment of multiple loadings; (4) substructuring techniques are readily applicable; and (5) asymptotic expressions follow naturally from the expressions (very thick layers; high frequencies, etc) While the technique presented is not more powerful than the original Haskell-Thompson scheme, it is nevertheless an elegant complement to it The exact expressions are given for the matrices, as well as approximations for thin layers Also, simple examples of application are presented to illustrate the use of the method

712 citations

Journal ArticleDOI
TL;DR: In this paper, the structural mechanics of assemblies of bars and pinjoints, particularly where they are simultaneously statically and kinematically indeterminate, are investigated, and an algorithm is set up which determines the rank of the matrix and the bases for the four subspaces.

683 citations

Journal ArticleDOI
TL;DR: In this article, a simple system comprising a vertical spring acting in parallel with two oblique springs is studied, and it is shown that there is a unique relationship between the geometry and the stiffness of the springs that yields a system with zero dynamic stiffness at the static equilibrium position.

582 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
85% related
Constitutive equation
24.9K papers, 665.1K citations
85% related
Mixed finite element method
22.2K papers, 614.1K citations
84% related
Numerical analysis
52.2K papers, 1.2M citations
81% related
Vibration
80K papers, 849.3K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202334
202270
202123
202022
201930
201842