scispace - formally typeset
Search or ask a question
Topic

Direct stiffness method

About: Direct stiffness method is a research topic. Over the lifetime, 2584 publications have been published within this topic receiving 53131 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a dynamic stiffness method is introduced to investigate the free vibration of laminated composite beams based on a third-order shear deformation theory which accounts for parabolic distribution of the transverse shear strain through the thickness of the beam.
Abstract: The dynamic stiffness method is introduced to investigate the free vibration of laminated composite beams based on a third-order shear deformation theory which accounts for parabolic distribution of the transverse shear strain through the thickness of the beam. The exact dynamic stiffness matrix is found directly from the analytical solutions of the basic governing differential equations of motion. The Poisson effect, shear deformation, rotary inertia, in-plane deformation are considered in the analysis. Application of the derived dynamic stiffness matrix to several particular laminated beams is discussed. The influences of Poisson effect, material anisotropy, slenderness and end condition on the natural frequencies of the beams are investigated. The numerical results are compared with the existing solutions in literature whenever possible to demonstrate and validate the present method.

40 citations

Book ChapterDOI
19 Sep 2008
TL;DR: In this article, a pipe-in-pipe (PiP) model is used to model the tunnel wall and its surrounding ground as two concentric pipes using elastic continuum theory, and the far field displacement is calculated by using another computationally efficient model that calculates Green's functions for a multi-layered half-space using the direct stiffness method.
Abstract: This paper presents a new method for calculating vibration from underground railways buried in a multi-layered half-space. The method assumes that the tunnel’s near-field displacements are controlled by the dynamics of the tunnel and the layer that contains the tunnel, and not by layers further away. Therefore the displacements at the tunnel-soil interface can be calculated using a model of a tunnel embedded in a full space. The Pipe-in-Pipe (PiP) model is used for this purpose, where the tunnel wall and its surrounding ground are modelled as two concentric pipes using elastic continuum theory. The PiP model is computationally efficient on account of uniformity along and around the tunnel. The far-field displacement is calculated by using another computationally efficient model that calculates Green’s functions for a multi-layered half-space using the direct stiffness method. The model is based on the exact solution of Navier’s equations for a horizontally layered half-space in the frequency-wavenumber domain.

40 citations

Journal ArticleDOI
TL;DR: In this article, an exact analytical solution of a finite element beam column resting on a Winkler foundation is performed from which the exact stiffness terms are determined, and the stiffness matrix is incorporated into a common beam program.

40 citations

Journal ArticleDOI
TL;DR: In this paper, the authors decompose a measured stiffness matrix into a stiffness matrix for a canonically oriented transversely isotropic medium (whose properties can be readily understood) plus a generally anisotropic perturbation (representing the medium's deviation from perfect symmetry), followed by a rotation.
Abstract: Mathematically, 21 stiffnesses arranged in a 6 × 6 symmetric matrix completely describe the elastic properties of any homogeneous anisotropic medium, regardless of symmetry system and orientation. However, it can be difficult in practice to characterize an anisotropic medium's properties merely from casual inspection of its (often experimentally measured) stiffness matrix. For characterization purposes, it is better to decompose a measured stiffness matrix into a stiffness matrix for a canonically oriented transversely isotropic (TI) medium (whose properties can be readily understood) plus a generally anisotropic perturbation (representing the medium's deviation from perfect symmetry), followed by a rotation (giving the relationship between the medium's natural coordinate system and the measurement coordinate system). To accomplish this decomposition, we must find the rotated symmetric medium that best approximates a given stiffness matrix. An analytical formula exists for calculating the distance between...

40 citations

Journal ArticleDOI
TL;DR: In this paper, a pseudo-excitation method is proposed for vibration analysis of wind-excited large civil engineering structures of closely spaced natural frequencies or equipped with discrete damping devices.

40 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
85% related
Constitutive equation
24.9K papers, 665.1K citations
85% related
Mixed finite element method
22.2K papers, 614.1K citations
84% related
Numerical analysis
52.2K papers, 1.2M citations
81% related
Vibration
80K papers, 849.3K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202334
202270
202123
202022
201930
201842