scispace - formally typeset
Search or ask a question
Topic

Dirty paper coding

About: Dirty paper coding is a research topic. Over the lifetime, 814 publications have been published within this topic receiving 37097 citations.


Papers
More filters
Book
31 Aug 2009
TL;DR: This paper presents a meta-analysis of Multiuser Detection over Multiple Input/Multiple Output Broadcast Channels and its implications for multi-Antenna capacity and diversity-Multiplexing Tradeoffs and Spatial Adaptation.
Abstract: Preface. Contributors. 1 Overview of Multiuser Detection ( Michael L. Honig). 1.1 Introduction. 1.2 Matrix Channel Model. 1.3 Optimal Multiuser Detection. 1.4 Linear Detectors. 1.5 Reduced-Rank Estimation. 1.6 Decision-Feedback Detection. 1.7 Interference Mitigation at the Transmitter. 1.8 Overview of Remaining Chapters. References. 2 Iterative Techniques ( Alex Grant and Lars K. Rasmussen). 2.1 Introduction. 2.2 Iterative Joint Detection for Uncoded Data. 2.3 Iterative Joint Decoding for Coded Data. 2.4 Concluding Remarks. References. 3 Blind Multiuser Detection in Fading Channels ( Daryl Reynolds, H. Vincent Poor, and Xiaodong Wang). 3.1 Introduction. 3.2 Signal Models and Blind Multiuser Detectors for Fading Channels. 3.3 Performance of Blind Multiuser Detectors. 3.4 Bayesian Multiuser Detection for Long-Code CDMA. 3.5 Multiuser Detection for Long-Code CDMA in Fast-Fading Channels. 3.6 Transmitter-Based Multiuser Precoding for Fading Channels. 3.7 Conclusion. References. 4 Performance with Random Signatures ( Matthew J. M. Peacock, Iain B. Collings, and Michael L. Honig). 4.1 Random Signatures and Large System Analysis. 4.2 System Models. 4.3 Large System Limit. 4.4 Random Matrix Terminology. 4.5 Incremental Matrix Expansion. 4.6 Analysis of Downlink Model. 4.7 Spectral Efficiency. 4.8 Adaptive Linear Receivers. 4.9 Other Models and Extensions. 4.10 Bibliographical Notes. References. 5 Generic Multiuser Detection and Statistical Physics < Dongning Guo and Toshiyuki Tanaka). 5.1 Introduction. 5.2 Generic Multiuser Detection. 5.3 Main Results: Single-User Characterization. 5.4 The Replica Analysis of Generic Multiuser Detection. 5.5 Further Discussion. 5.6 Statistical Physics and the Replica Method. 5.7 Interference Cancellation. 5.8 Concluding Remarks. 5.9 Acknowledgments. References. 6 Joint Detection for Multi-Antenna Channels ( Antonia Tulino, Matthew R. McKay, Jeffrey G. Andrews,. Iain B. Collings, and Robert W. Heath, Jr.). 6.1 Introduction. 6.2 Wireless Channels: The Multi-Antenna Realm. 6.3 Definitions and Preliminaries. 6.4 Multi-Antenna Capacity: Ergodic Regime. 6.5 Multi-Antenna Capacity: Non-Ergodic Regime. 6.6 Receiver Architectures and Performance. 6.7 Multiuser Multi-Antenna Systems. 6.8 Diversity-Multiplexing Tradeoffs and Spatial Adaptation. 6.9 Conclusions. References. 7 Interference Avoidance for CDMA Systems ( Dimitrie C. Popescu, Sennur Ulukus, Christopher Rose, and Roy Yates). 7.1 Introduction. 7.2 Interference Avoidance Basics. 7.3 Interference Avoidance over Time-Invariant Channels. 7.4 Interference Avoidance in Fading Channels. 7.5 Interference Avoidance in Asynchronous Systems. 7.6 Feedback Requirements for Interference Avoidance. 7.7 Recent Results on Interference Avoidance. 7.8 Summary and Conclusions. References. 8 Capacity-Approaching Multiuser Communications Over Multiple Input/Multiple Output Broadcast Channels ( Uri Erez and Stephan ten Brink). 8.1 Introduction. 8.2 Many-to-One Multiple Access versus One-to-Many Scalar Broadcast Channels. 8.3 Alternative Approach: Dirty Paper Coding. 8.4 A Simple 2 x 2 Example. 8.5 General Gaussian MIMO Broadcast Channels. 8.6 Coding with Side Information at the Transmitter. 8.7 Summary. References. Index.

86 citations

Journal ArticleDOI
TL;DR: A network framework for evaluating the theoretical performance limits of wireless data communication and addresses the problem of providing the best possible service to new users joining the system without affecting existing users, dubbed PhantomNet.
Abstract: We present a network framework for evaluating the theoretical performance limits of wireless data communication. We address the problem of providing the best possible service to new users joining the system without affecting existing users. Since, interference-wise, new users are required to be invisible to existing users, the network is dubbed Phantom Net. The novelty is the generality obtained in this context. Namely, we can deal with multiple users, multiple antennas, and multiple cells on both the uplink and the downlink. The solution for the uplink is effectively the same as for a single cell system since all the base stations (BSs) simply amount to one composite BS with centralized processing. The optimum strategy, following directly from known results, is successive decoding (SD), where the new user is decoded before the existing users so that the new users' signal can be subtracted out to meet its invisibility requirement. Only the BS needs to modify its decoding scheme in the handling of new users, since existing users continue to transmit their data exactly as they did before the new arrivals. The downlink, even with the BSs operating as one composite BS, is more problematic. With multiple antennas at each BS site, the optimal coding scheme and the capacity region for this channel are unsolved problems. SD and dirty paper (DP) are two schemes previously reported to achieve capacity in special cases. For PhantomNet, we show that DP coding at the BS is equal to or better than SD. The new user is encoded before the existing users so that the interference caused by his signal to existing users is known to the transmitter. Thus the BS modifies its encoding scheme to accommodate new users so that existing users continue to operate as before: they achieve the same rates as before and they decode their signal in precisely the same way as before. The solutions for the uplink and the downlink are particularly interesting in the way they exhibit a remarkable simplicity and an unmistakable, near-perfect, up-down symmetry.

85 citations

Proceedings ArticleDOI
01 Nov 2007
TL;DR: Coding strategies that combine dirty paper coding, beamforming and interference reduction techniques at the relay are provided and an achievable rate region is given for Gaussian interference relay channel.
Abstract: We consider two interfering source-destination pairs that are assisted by a common relay. The relay simultaneously helps both sources to improve communication rates. We provide coding strategies that combine dirty paper coding, beamforming and interference reduction techniques at the relay and give an achievable rate region for Gaussian interference relay channel. The region shows significant rate gain can be obtained by performing generalized dirty-paper coding at the relay.

83 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered a three-terminal state-dependent relay channel with the channel state noncausally available at only the relay, and derived lower and upper bounds on the capacity.
Abstract: In this paper, we consider a three-terminal state-dependent relay channel (RC) with the channel state noncausally available at only the relay. Such a model may be useful for designing cooperative wireless networks with some terminals equipped with cognition capabilities, i.e., the relay in our setup. In the discrete memoryless (DM) case, we establish lower and upper bounds on channel capacity. The lower bound is obtained by a coding scheme at the relay that uses a combination of codeword splitting, Gel'fand-Pinsker binning, and decode-and-forward (DF) relaying. The upper bound improves upon that obtained by assuming that the channel state is available at the source, the relay, and the destination. For the Gaussian case, we also derive lower and upper bounds on the capacity. The lower bound is obtained by a coding scheme at the relay that uses a combination of codeword splitting, generalized dirty paper coding (DPC), and DF relaying; the upper bound is also better than that obtained by assuming that the channel state is available at the source, the relay, and the destination. In the case of degraded Gaussian channels, the lower bound meets with the upper bound for some special cases, and, so, the capacity is obtained for these cases. Furthermore, in the Gaussian case, we also extend the results to the case in which the relay operates in a half-duplex mode.

82 citations

Journal ArticleDOI
TL;DR: Applications of the hybrid digital analog schemes in the case of channel signal-to-noise ratio mismatch and for lossy multicasting of a common source with bandwidth compression are discussed.
Abstract: We study the joint source-channel coding problem of transmitting a Gaussian source over a Gaussian channel in two cases: (i) the presence of interference known only to the transmitter and (ii) in the presence of side information about the source known only to the receiver. We introduce hybrid digital analog forms of the Costa and Wyner-Ziv coding schemes. We present the random coding counterpart of schemes based on lattices proposed by Kochman and Zamir. Then, we discuss applications of the hybrid digital analog schemes in the case of channel signal-to-noise ratio mismatch and for lossy multicasting of a common source with bandwidth compression.

79 citations

Network Information
Related Topics (5)
Fading
55.4K papers, 1M citations
89% related
Base station
85.8K papers, 1M citations
87% related
Wireless network
122.5K papers, 2.1M citations
86% related
Wireless
133.4K papers, 1.9M citations
84% related
Network packet
159.7K papers, 2.2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20236
202217
202121
202013
201926
201823