scispace - formally typeset
Search or ask a question
Topic

Discrete cosine transform

About: Discrete cosine transform is a research topic. Over the lifetime, 16643 publications have been published within this topic receiving 263224 citations. The topic is also known as: DCT.


Papers
More filters
Posted Content
TL;DR: In this paper, a generalized discrete cosine transform with three parameters was proposed and its orthogonality was proved for some new cases, and a new type of DCT was also proposed.
Abstract: The discrete cosine transform (DCT), introduced by Ahmed, Natarajan and Rao, has been used in many applications of digital signal processing, data compression and information hiding. There are four types of the discrete cosine transform. In simulating the discrete cosine transform, we propose a generalized discrete cosine transform with three parameters, and prove its orthogonality for some new cases. A new type of discrete cosine transform is proposed and its orthogonality is proved. Finally, we propose a generalized discrete W transform with three parameters, and prove its orthogonality for some new cases.

1,096 citations

Journal ArticleDOI
C.I. Podilchuk1, Wenjun Zeng2
TL;DR: This work proposes perceptually based watermarking schemes in two frameworks: the block-based discrete cosine transform and multiresolution wavelet framework and discusses the merits of each one, which are shown to provide very good results both in terms of image transparency and robustness.
Abstract: The huge success of the Internet allows for the transmission, wide distribution, and access of electronic data in an effortless manner. Content providers are faced with the challenge of how to protect their electronic data. This problem has generated a flurry of research activity in the area of digital watermarking of electronic content for copyright protection. The challenge here is to introduce a digital watermark that does not alter the perceived quality of the electronic content, while being extremely robust to attack. For instance, in the case of image data, editing the picture or illegal tampering should not destroy or transform the watermark into another valid signature. Equally important, the watermark should not alter the perceived visual quality of the image. From a signal processing perspective, the two basic requirements for an effective watermarking scheme, robustness and transparency, conflict with each other. We propose two watermarking techniques for digital images that are based on utilizing visual models which have been developed in the context of image compression. Specifically, we propose watermarking schemes where visual models are used to determine image dependent upper bounds on watermark insertion. This allows us to provide the maximum strength transparent watermark which, in turn, is extremely robust to common image processing and editing such as JPEG compression, rescaling, and cropping. We propose perceptually based watermarking schemes in two frameworks: the block-based discrete cosine transform and multiresolution wavelet framework and discuss the merits of each one. Our schemes are shown to provide very good results both in terms of image transparency and robustness.

962 citations

Journal ArticleDOI
TL;DR: The proposed algorithm - very fast, automatic, robust and requiring low storage -provides an efficient smoother for numerous applications in the area of data analysis.

936 citations

Journal ArticleDOI
TL;DR: The proposed method is robust and of much lower complexity than a complete decoding process followed by watermarking in the pixel domain and re-encoding, and is also applicable to other hybrid transform coding schemes like MPEG-1, MPEG-4, H.263.

861 citations

Journal ArticleDOI
27 Jun 2005
TL;DR: SPIRAL generates high-performance code for a broad set of DSP transforms, including the discrete Fourier transform, other trigonometric transforms, filter transforms, and discrete wavelet transforms.
Abstract: Fast changing, increasingly complex, and diverse computing platforms pose central problems in scientific computing: How to achieve, with reasonable effort, portable optimal performance? We present SPIRAL, which considers this problem for the performance-critical domain of linear digital signal processing (DSP) transforms. For a specified transform, SPIRAL automatically generates high-performance code that is tuned to the given platform. SPIRAL formulates the tuning as an optimization problem and exploits the domain-specific mathematical structure of transform algorithms to implement a feedback-driven optimizer. Similar to a human expert, for a specified transform, SPIRAL "intelligently" generates and explores algorithmic and implementation choices to find the best match to the computer's microarchitecture. The "intelligence" is provided by search and learning techniques that exploit the structure of the algorithm and implementation space to guide the exploration and optimization. SPIRAL generates high-performance code for a broad set of DSP transforms, including the discrete Fourier transform, other trigonometric transforms, filter transforms, and discrete wavelet transforms. Experimental results show that the code generated by SPIRAL competes with, and sometimes outperforms, the best available human tuned transform library code.

853 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
91% related
Image segmentation
79.6K papers, 1.8M citations
89% related
Feature (computer vision)
128.2K papers, 1.7M citations
88% related
Image processing
229.9K papers, 3.5M citations
86% related
Convolutional neural network
74.7K papers, 2M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023290
2022697
2021493
2020599
2019650
2018716