scispace - formally typeset
Search or ask a question
Topic

Discrete Hartley transform

About: Discrete Hartley transform is a research topic. Over the lifetime, 2043 publications have been published within this topic receiving 58835 citations.


Papers
More filters
Book
01 Jan 1986
TL;DR: The author describes the fast algorithm he discovered for spectral analysis and indeed any purpose to which Fourier Transforms and the Fast Fourier Transform are normally applied.
Abstract: The author describes the fast algorithm he discovered for spectral analysis and indeed any purpose to which Fourier Transforms and the Fast Fourier Transform are normally applied.

437 citations

Journal ArticleDOI
TL;DR: It is shown that the DRT can be used to compute various generalizations of the classical Radon transform (RT) and, in particular, the generalization where straight lines are replaced by curves and weight functions are introduced into the integrals along these curves.
Abstract: This paper describes the discrete Radon transform (DRT) and the exact inversion algorithm for it. Similar to the discrete Fourier transform (DFT), the DRT is defined for periodic vector-sequences and studied as a transform in its own right. Casting the forward transform as a matrix-vector multiplication, the key observation is that the matrix-although very large-has a block-circulant structure. This observation allows construction of fast direct and inverse transforms. Moreover, we show that the DRT can be used to compute various generalizations of the classical Radon transform (RT) and, in particular, the generalization where straight lines are replaced by curves and weight functions are introduced into the integrals along these curves. In fact, we describe not a single transform, but a class of transforms, representatives of which correspond in one way or another to discrete versions of the RT and its generalizations. An interesting observation is that the exact inversion algorithm cannot be obtained directly from Radon's inversion formula. Given the fact that the RT has no nontrivial one-dimensional analog, exact invertibility makes the DRT a useful tool geared specifically for multidimensional digital signal processing. Exact invertibility of the DRT, flexibility in its definition, and fast computational algorithm affect present applications and open possibilities for new ones. Some of these applications are discussed in the paper.

426 citations

Journal ArticleDOI
TL;DR: It is shown that the discrete equivalent of a chirp filter is needed to implement the computation of the discrete Fourier transform (DFT) as a linear filtering process, and that use of the conventional FFT permits the computations in a time proportional to N \log_{2} N for any N.
Abstract: It is shown in this paper that the discrete equivalent of a chirp filter is needed to implement the computation of the discrete Fourier transform (DFT) as a linear filtering process. We show further that the chirp filter should not be realized as a transversal filter in a wide range of cases; use instead of the conventional FFT permits the computation of the DFT in a time proportional to N \log_{2} N for any N, N being the number of points in the array that is transformed. Another proposed implementation of the chirp filter requires N to be a perfect square. The number of operations required for this algorithm is proportional to N^{3/2} .

410 citations

Book ChapterDOI
01 Jan 1990
TL;DR: In this article, Chen, Smith, and Fralick developed a real arithmetic and recursive algorithm for efficient implementation of the discrete cosine transform (DCT), which is based on the discrete Fourier transform (DFT).
Abstract: Publisher Summary This chapter presents discrete cosine transform. The development of fast algorithms for efficient implementation of the discrete Fourier transform (DFT) by Cooley and Tukey in 1965 has led to phenomenal growth in its applications in digital signal processing (DSP). The discovery of the discrete cosine transform (DCT) in 1974 has provided a significant impact in the DSP field. While the original DCT algorithm is based on the FFT, a real arithmetic and recursive algorithm, developed by Chen, Smith, and Fralick in 1977, was the major breakthrough in the efficient implementation of the DCT. A less well-known but equally efficient algorithm was developed by Corrington. Subsequently, other algorithms, such as the decimation-in-time (DIT),decimation-in-frequency (DIF), split radix, DCT via other discrete transforms such as the discrete Hartley transform (DHT) or the Walsh-Hadamard transform (WHT), prime factor algorithm (PFA), a fast recursive algorithm, and planar rotations, which concentrate on reducing the computational complexity and/or improving the structural simplicity, have been developed. The dramatic development of DCT-based DSP is by no means an accident.

382 citations

Book
01 Jan 1987
TL;DR: This book discusses the Discrete Fourier Transform (DFT) and a few applications of the DFT, as well as some of the techniques used in real sequences and the Real DFT.
Abstract: Preface 1. Introduction. A Bit of History An Application Problems 2. The Discrete Fourier Transform (DFT). Introduction DFT Approximation to the Fourier Transform The DFT-IDFT pair DFT Approximations to Fourier Series Coefficients The DFT from Trigonometric Approximation Transforming a Spike Train Limiting Forms of the DFT-IDFT Pair Problems 3. Properties of the DFT. Alternate Forms for the DFT Basic Properties of the DFT Other Properties of the DFT A Few Practical Considerations Analytical DFTs Problems 4. Symmetric DFTs. Introduction Real sequences and the Real DFT (RDFT) Even Sequences and the Discrete Cosine Transform (DST) Odd Sequences and the Discrete Sine Transform (DST) Computing Symmetric DFTs Notes Problems 5. Multi-dimensional DFTs. Introduction Two-dimensional DFTs Geometry of Two-Dimensional Modes Computing Multi-Dimensional DFTs Symmetric DFTs in Two Dimensions Problems 6. Errors in the DFT. Introduction Periodic, Band-limited Input Periodic, Non-band-limited Input Replication and the Poisson Summation Formula Input with Compact Support General Band-Limited Functions General Input Errors in the Inverse DFT DFT Interpolation - Mean Square Error Notes and References Problems 7. A Few Applications of the DFT. Difference Equations - Boundary Value Problems Digital Filtering of Signals FK Migration of Seismic Data Image Reconstruction from Projections Problems 8. Related Transforms. Introduction The Laplace Transform The z- Transform The Chebyshev Transform Orthogonal Polynomial Transforms The Discrete Hartley Transform (DHT) Problems 9. Quadrature and the DFT. Introduction The DFT and the Trapezoid Rule Higher Order Quadrature Rules Problems 10. The Fast Fourier Transform (FFT). Introduction Splitting Methods Index Expansions (One ---> Multi-dimensional) Matrix Factorizations Prime Factor and Convolution Methods FFT Performance Notes Problems Glossary of (Frequently and Consistently Used) Notations References.

354 citations


Network Information
Related Topics (5)
Wavelet
78K papers, 1.3M citations
80% related
Feature extraction
111.8K papers, 2.1M citations
79% related
Robustness (computer science)
94.7K papers, 1.6M citations
79% related
Image processing
229.9K papers, 3.5M citations
77% related
Network packet
159.7K papers, 2.2M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202310
202222
202113
202019
201917
201815