scispace - formally typeset
Search or ask a question
Topic

Discrete optimization

About: Discrete optimization is a research topic. Over the lifetime, 4598 publications have been published within this topic receiving 158297 citations. The topic is also known as: discrete optimisation.


Papers
More filters
Journal ArticleDOI
Serpil Sayin1
TL;DR: This work presents a method that can find discrete representations of the efficient set according to a specified level of quality, based on mathematical programming tools and can be implemented relatively easily when the domain of interest is a polyhedron.
Abstract: An important issue in multiple objective mathematical programming is finding discrete representations of the efficient set. Because discrete points can be directly studied by a decision maker, a discrete representation can serve as the solution to the multiple objective problem at hand. However, the discrete representation must be of acceptable quality to ensure that a most--preferred solution identified by a decision maker is of acceptable quality. Recently, attributes for measuring the quality of discrete representations have been proposed. Although discrete representations can be obtained in many different ways, and their quality evaluated afterwards, the ultimate goal should be to find such representations so as to conform to specified quality standards. We present a method that can find discrete representations of the efficient set according to a specified level of quality. The procedure is based on mathematical programming tools and can be implemented relatively easily when the domain of interest is a polyhedron. The nonconvexity of the efficient set is dealt with through a coordinated decomposition approach. We conduct computational experiments and report results.

49 citations

Journal ArticleDOI
TL;DR: A general ordertheoretic linear programming model for the study of matroid-type greedy algorithms is introduced and the submodular intersection theorem of Edmonds and Giles is seen to extend to the case with a rooted forest as underlying structure.
Abstract: A general ordertheoretic linear programming model for the study of matroid-type greedy algorithms is introduced. The primal restrictions are given by so-called weakly increasing submodular functions on antichains. The LP-dual is solved by a Monge-type greedy algorithm. The model offers a direct combinatorial explanation for many integrality results in discrete optimization. In particular, the submodular intersection theorem of Edmonds and Giles is seen to extend to the case with a rooted forest as underlying structure. The core of associated polyhedra is introduced and applications to the existence of the core in cooperative game theory are discussed.

49 citations

Journal ArticleDOI
TL;DR: This study proposes particle swarm optimization based algorithms to solve multi-objective engineering optimization problems involving continuous, discrete and/or mixed design variables and uses a closest discrete approach (CDA) to solve optimization problems with discrete design variables.
Abstract: This study proposes particle swarm optimization (PSO) based algorithms to solve multi-objective engineering optimization problems involving continuous, discrete and/or mixed design variables. The original PSO algorithm is modified to include dynamic maximum velocity function and bounce method to enhance the computational efficiency and solution accuracy. The algorithm uses a closest discrete approach (CDA) to solve optimization problems with discrete design variables. A modified game theory (MGT) approach, coupled with the modified PSO, is used to solve multi-objective optimization problems. A dynamic penalty function is used to handle constraints in the optimization problem. The methodologies proposed are illustrated by several engineering applications and the results obtained are compared with those reported in the literature.

49 citations

Book ChapterDOI
01 Jan 2013
TL;DR: This chapter discusses rollout algorithms, a sequential approach to optimization problems, whereby the optimization variables are optimized one after the other, for discrete deterministic optimization problems.
Abstract: This chapter discusses rollout algorithms, a sequential approach to optimization problems, whereby the optimization variables are optimized one after the other. A rollout algorithm starts from some given heuristic and constructs another heuristic with better performance than the original. The method is particularly simple to implement, and is often surprisingly e↵ective. This chapter explains the method and its properties for discrete deterministic optimization problems.

49 citations

Journal ArticleDOI
TL;DR: A technique is presented for extending the constrained search approach used in MINOS to exploring integer-feasible solutions once a continuous optimal solution is obtained.
Abstract: This paper describes recent experience in tackling large nonlinear integer programming problems using the MINOS large-scale optimization software. A technique is presented for extending the constrained search approach used in MINOS to exploring integer-feasible solutions once a continuous optimal solution is obtained. Computational experience with this approach is described for two classes of problems: quadratic assignment problems and pipeline network design problems.

49 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
90% related
Optimal control
68K papers, 1.2M citations
84% related
Robustness (computer science)
94.7K papers, 1.6M citations
84% related
Scheduling (computing)
78.6K papers, 1.3M citations
83% related
Linear system
59.5K papers, 1.4M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202313
202236
2021104
2020128
2019113
2018140