scispace - formally typeset
Search or ask a question
Topic

Discrete-time Fourier transform

About: Discrete-time Fourier transform is a research topic. Over the lifetime, 5072 publications have been published within this topic receiving 144643 citations. The topic is also known as: DTFT.


Papers
More filters
Journal ArticleDOI
TL;DR: A method of spatial modal decomposition for optical beams by fractional Fourier transform, and its practical implementation with reduced complexity by use of modal interleavers, are discussed.
Abstract: A method of spatial modal decomposition for optical beams by fractional Fourier transform, and its practical implementation with reduced complexity by use of modal interleavers, are discussed.

50 citations

Journal ArticleDOI
TL;DR: In this paper, the static response of beam-and plate-like repetitive lattice structures is obtained by discrete Fourier transform, and the governing equation is set up as a single operator form with the physical stiffness operator acting as a convolution sum and containing a matrix kernel.

50 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated temporal, second-order classical ghost imaging with long, incoherent, scalar plane-wave pulses and proved that the intensity correlation function at the output of the setup is given by the fractional Fourier transform of the temporal object.
Abstract: We investigate temporal, second-order classical ghost imaging with long, incoherent, scalar plane-wave pulses. We prove that in rather general conditions, the intensity correlation function at the output of the setup is given by the fractional Fourier transform of the temporal object. In special cases, the correlation function is shown to reduce to the ordinary Fourier transform and the temporal image of the object. Effects influencing the visibility and the resolution are considered. This work extends certain known results on spatial ghost imaging into the time domain and could find applications in temporal tomography of pulses.

50 citations

Journal ArticleDOI
TL;DR: In this paper, a positive-sequence phase-angle estimation method based on discrete Fourier transform for the synchronization of three-phase power-electronic converters under distorted and variable-frequency conditions is proposed.
Abstract: This paper proposes a positive-sequence phase-angle estimation method based on discrete Fourier transform for the synchronization of three-phase power-electronic converters under distorted and variable-frequency conditions. The proposed method is designed based on a fixed sampling rate and, thus, it can simply be employed for control applications. First, analytical analysis is presented to determine the errors associated with the phasor estimation using standard discrete Fourier transform in a variable-frequency environment. Then, a robust phase-angle estimation technique is proposed, which is based on a combination of estimated positive and negative sequences, tracked frequency, and two proposed compensation coefficients. The proposed method has one cycle transient response and is immune to harmonics, noises, voltage imbalances, and grid frequency variations. An effective approximation technique is proposed to simplify the computation of the compensation coefficients. The effectiveness of the proposed method is verified through a comprehensive set of simulations in Matlab software. Simulation results show the robust and accurate performance of the proposed method in various abnormal operating conditions.

49 citations

Journal ArticleDOI
TL;DR: The fractionalization of the Fourier transform (FT) is analyzed, starting from the minimal premise that repeated application of the fractional Fouriertransform a sufficient number of times should give back the FT.
Abstract: We analyze the fractionalization of the Fourier transform (FT), starting from the minimal premise that repeated application of the fractional Fourier transform (FrFT) a sufficient number of times should give back the FT. There is a qualitative increase in the richness of the solution manifold, from U(1) (the circle S1) in the one-dimensional case to U(2) (the four-parameter group of 2 × 2 unitary matrices) in the two-dimensional case [rather than simply U(1)×U(1)]. Our treatment clarifies the situation in the N-dimensional case. The parameterization of this manifold (a fiber bundle) is accomplished through two powers running over the torus T2=S1×S1 and two parameters running over the Fourier sphere S2. We detail the spectral representation of the FrFT: The eigenvalues are shown to depend only on the T2 coordinates; the eigenfunctions, only on the S2 coordinates. FrFT’s corresponding to special points on the Fourier sphere have for eigenfunctions the Hermite–Gaussian beams and the Laguerre–Gaussian beams, while those corresponding to generic points are SU(2)-coherent states of these beams. Thus the integral transform produced by every Sp(4, R) first-order system is essentially a FrFT.

49 citations


Network Information
Related Topics (5)
Wavelet
78K papers, 1.3M citations
81% related
Nonlinear system
208.1K papers, 4M citations
79% related
Differential equation
88K papers, 2M citations
78% related
Matrix (mathematics)
105.5K papers, 1.9M citations
78% related
Boundary value problem
145.3K papers, 2.7M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202321
202249
20216
202015
201917
201834