scispace - formally typeset
Search or ask a question
Topic

Discriminative model

About: Discriminative model is a research topic. Over the lifetime, 16926 publications have been published within this topic receiving 558663 citations.


Papers
More filters
Posted Content
TL;DR: In this article, the authors revisited the global average pooling layer and shed light on how it explicitly enables the convolutional neural network to have remarkable localization ability despite being trained on image-level labels.
Abstract: In this work, we revisit the global average pooling layer proposed in [13], and shed light on how it explicitly enables the convolutional neural network to have remarkable localization ability despite being trained on image-level labels. While this technique was previously proposed as a means for regularizing training, we find that it actually builds a generic localizable deep representation that can be applied to a variety of tasks. Despite the apparent simplicity of global average pooling, we are able to achieve 37.1% top-5 error for object localization on ILSVRC 2014, which is remarkably close to the 34.2% top-5 error achieved by a fully supervised CNN approach. We demonstrate that our network is able to localize the discriminative image regions on a variety of tasks despite not being trained for them

5,065 citations

Proceedings ArticleDOI
15 Jun 2019
TL;DR: This paper presents arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks, and shows that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead.
Abstract: One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition is the design of appropriate loss functions that can enhance the discriminative power. Centre loss penalises the distance between deep features and their corresponding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the linear transformation matrix in the last fully connected layer can be used as a representation of the class centres in the angular space and therefore penalises the angles between deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to maximise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to its exact correspondence to geodesic distance on a hypersphere. We present arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks which includes a new large-scale image database with trillions of pairs and a large-scale video dataset. We show that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead. To facilitate future research, the code has been made available.

4,312 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: Adversarial Discriminative Domain Adaptation (ADDA) as mentioned in this paper combines discriminative modeling, untied weight sharing, and a generative adversarial network (GAN) loss.
Abstract: Adversarial learning methods are a promising approach to training robust deep networks, and can generate complex samples across diverse domains. They can also improve recognition despite the presence of domain shift or dataset bias: recent adversarial approaches to unsupervised domain adaptation reduce the difference between the training and test domain distributions and thus improve generalization performance. However, while generative adversarial networks (GANs) show compelling visualizations, they are not optimal on discriminative tasks and can be limited to smaller shifts. On the other hand, discriminative approaches can handle larger domain shifts, but impose tied weights on the model and do not exploit a GAN-based loss. In this work, we first outline a novel generalized framework for adversarial adaptation, which subsumes recent state-of-the-art approaches as special cases, and use this generalized view to better relate prior approaches. We then propose a previously unexplored instance of our general framework which combines discriminative modeling, untied weight sharing, and a GAN loss, which we call Adversarial Discriminative Domain Adaptation (ADDA). We show that ADDA is more effective yet considerably simpler than competing domain-adversarial methods, and demonstrate the promise of our approach by exceeding state-of-the-art unsupervised adaptation results on standard domain adaptation tasks as well as a difficult cross-modality object classification task.

4,288 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: The idea is to learn a function that maps input patterns into a target space such that the L/sub 1/ norm in the target space approximates the "semantic" distance in the input space.
Abstract: We present a method for training a similarity metric from data. The method can be used for recognition or verification applications where the number of categories is very large and not known during training, and where the number of training samples for a single category is very small. The idea is to learn a function that maps input patterns into a target space such that the L/sub 1/ norm in the target space approximates the "semantic" distance in the input space. The method is applied to a face verification task. The learning process minimizes a discriminative loss function that drives the similarity metric to be small for pairs of faces from the same person, and large for pairs from different persons. The mapping from raw to the target space is a convolutional network whose architecture is designed for robustness to geometric distortions. The system is tested on the Purdue/AR face database which has a very high degree of variability in the pose, lighting, expression, position, and artificial occlusions such as dark glasses and obscuring scarves.

3,870 citations

Book ChapterDOI
05 Sep 2010
TL;DR: In an evaluation involving hundreds of thousands of training images, it is shown that classifiers learned on Flickr groups perform surprisingly well and that they can complement classifier learned on more carefully annotated datasets.
Abstract: The Fisher kernel (FK) is a generic framework which combines the benefits of generative and discriminative approaches. In the context of image classification the FK was shown to extend the popular bag-of-visual-words (BOV) by going beyond count statistics. However, in practice, this enriched representation has not yet shown its superiority over the BOV. In the first part we show that with several well-motivated modifications over the original framework we can boost the accuracy of the FK. On PASCAL VOC 2007 we increase the Average Precision (AP) from 47.9% to 58.3%. Similarly, we demonstrate state-of-the-art accuracy on CalTech 256. A major advantage is that these results are obtained using only SIFT descriptors and costless linear classifiers. Equipped with this representation, we can now explore image classification on a larger scale. In the second part, as an application, we compare two abundant resources of labeled images to learn classifiers: ImageNet and Flickr groups. In an evaluation involving hundreds of thousands of training images we show that classifiers learned on Flickr groups perform surprisingly well (although they were not intended for this purpose) and that they can complement classifiers learned on more carefully annotated datasets.

2,961 citations


Network Information
Related Topics (5)
Convolutional neural network
74.7K papers, 2M citations
92% related
Deep learning
79.8K papers, 2.1M citations
91% related
Feature extraction
111.8K papers, 2.1M citations
90% related
Feature (computer vision)
128.2K papers, 1.7M citations
89% related
Image segmentation
79.6K papers, 1.8M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20232,384
20224,963
20211,844
20201,877
20191,758