scispace - formally typeset
Search or ask a question
Topic

Disdrometer

About: Disdrometer is a research topic. Over the lifetime, 930 publications have been published within this topic receiving 23092 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a set of optical and impact-type disdrometers were used to test how accurately they measure drop size distributions (DSDs), and their use in determining radar rainfall relations such as that between reflectivity and rainfall rate was analyzed.
Abstract: Simultaneous observations made with optical- and impact-type disdrometers were analyzed to broaden knowledge of these instruments. These observations were designed to test how accurately they measure drop size distributions (DSDs). The instruments' use in determining radar rainfall relations such as that between reflectivity and rainfall rate also was analyzed. A unique set of instruments, including two video and one Joss–Waldvogel disdrometer along with eight tipping-bucket rain gauges, was operated within a small area of about 100 × 50 m2 during a 2-month-long field campaign in central Florida. The disdrometers were evaluated by comparing their rain totals with the rain gauges. Both disdrometers underestimated the rain totals, but the video disdrometers had higher readings, resulting in a better agreement with the gauges. The disdrometers underreported small- to medium-size drops, which most likely caused the underestimation of rain totals. However, more medium-size drops were measured by the v...

231 citations

Journal ArticleDOI
TL;DR: In this paper, a two-dimensional video disdrometer was used to determine the form of particle size distributions (PSDs) and search for useful interrelationships among the governing parameters of assumed distribution forms and environmental factors.
Abstract: Winter-storm hydrometeor distributions along the Front Range in eastern Colorado are studied with a ground-based two-dimensional video disdrometer. The instrument provides shape, size, and terminal velocity information for particles that are larger than about 0.4 mm. The dataset is used to determine the form of particle size distributions (PSDs) and to search for useful interrelationships among the governing parameters of assumed distribution forms and environmental factors. Snowfalls are dominated by almost spherical aggregates having near-exponential or superexponential size distributions. Raindrop size distributions are more peaked than those for snow. A relation between bulk snow density and particle median volume diameter is derived. The data suggest that some adjustment may be needed in relationships found previously between temperature and the concentration and slope parameters of assumed exponential PSDs. A potentially useful relationship is found between the slope and shape terms of the ...

230 citations

Journal ArticleDOI
TL;DR: In this paper, data from three 2D video disdrometers and an S-band polarimetric radar are used to characterize rain microphysics in Oklahoma and a method of sorting and averaging based on two parameters (SATP) is proposed.
Abstract: In this paper, data from three 2-dimensional video disdrometers (2DVDs) and an S-band polarimetric radar are used to characterize rain microphysics in Oklahoma. Sampling errors from the 2DVD measurements are quantified through side-by-side comparisons. In an attempt to minimize the sampling errors, a method of sorting and averaging based on two parameters (SATP) is proposed. The shape–slope (μ–Λ) relation of a constrained gamma (C-G) model is then refined for the retrieval of drop size distributions (DSDs) from polarimetric radar measurements. An adjustable term that is based on observed radar reflectivity and differential reflectivity is introduced to make the C-G DSD model more applicable. Radar retrievals using this improved DSD model are shown to provide good agreement with disdrometer observations and to give reasonable results, including in locations near the leading edge of convection where poorly sampled large drops are often observed.

219 citations

Journal ArticleDOI
TL;DR: In this article, the error propagation from moment estimators to rain DSD parameter estimators is studied, and the standard errors and correlation coefficient are derived through systematic error analysis using numerical simulations, and errors in estimated DSD parameters are quantified.
Abstract: The three-parameter gamma distribution n(D) = N0Dµ exp(–ΛD) is often used to characterize a raindrop size distribution (DSD). The parameters µ and Λ correspond to the shape and slope of the DSD. If µ and Λ are related to one another, as recent disdrometer measurements suggest, the gamma DSD model is simplified, which facilitates retrieval of rain parameters from remote measurements. It is important to determine whether the µ–Λ relation arises from errors in estimated DSD moments, or from natural rain processes, or from a combination of both statistical error and rain physics. In this paper, the error propagation from moment estimators to rain DSD parameter estimators is studied. The standard errors and correlation coefficient are derived through systematic error analysis. Using numerical simulations, errors in estimated DSD parameters are quantified. The analysis shows that errors in moment estimators do cause correlations among the estimated DSD parameters and cause a linear relation between est...

219 citations

Journal ArticleDOI
TL;DR: In this article, time histories of the characteristics of the drop size distribution of surface disdrometer measurements collected at Kapingamarangi Atoll were partitioned for several storms using rain rate R, reflectivity factor Z, and median diameter of the distribution of water content D0.
Abstract: Time histories of the characteristics of the drop size distribution of surface disdrometer measurements collected at Kapingamarangi Atoll were partitioned for several storms using rain rate R, reflectivity factor Z, and median diameter of the distribution of water content D0. This partitioning produced physically based systematic variations of the drop size distribution (DSD) and Z-R relations in accord with the precipitation types viewed simultaneously by a collocated radar wind profiler. These variations encompass the complete range of scatter around the mean Z-R relations previously reported by Tokay and Short [1996] for convective and stratiform rain and demonstrate that the scatter is not random. The systematic time or space variations are also consistent with the structure of mesoscale convective complexes with a sequence of convective, transition, and stratiform rain described by various authors. There is a distinct inverse relation between the coefficient A and the exponent of the Z-R relations which has been obscured in prior work because of the lack of proper discrimination of the rain types. Contrary to previous practice it is evident that there is also a distinct difference in the DSD and the Z-R relations between the initial convective and the trailing transition zones. The previously reported Z-R relation for convective rain is primarily representative of the transition rain that was included in the convective class. The failure of present algorithms to distinguish between the initial convective and the trailing transition rains causes an erroneous apportionment of the diabatic heating and cooling and defeats the primary intent of discriminating stratiform from convective rains.

218 citations


Network Information
Related Topics (5)
Climate model
22.2K papers, 1.1M citations
85% related
Radar
91.6K papers, 1M citations
82% related
Sea surface temperature
21.2K papers, 874.7K citations
82% related
Precipitation
32.8K papers, 990.4K citations
82% related
Snow
35.1K papers, 709.2K citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202378
2022114
202151
202059
201972
201840