scispace - formally typeset
Search or ask a question
Topic

Dispersion-shifted fiber

About: Dispersion-shifted fiber is a research topic. Over the lifetime, 19489 publications have been published within this topic receiving 320689 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In order to control dispersion and dispersion slope of indexguiding photonic crystal fibers (PCFs), a new controlling technique of chromatic dispersion in PCF is reported and it is shown from numerical results that it is possible to design a fourring PCF with flattened dispersion.
Abstract: In order to control dispersion and dispersion slope of indexguiding photonic crystal fibers (PCFs), a new controlling technique of chromatic dispersion in PCF is reported. Moreover, our technique is applied to design PCF with both ultra-low dispersion and ultra-flattened dispersion in wide wavelength range. A full-vector finite element method with anisotropic perfectly matched layers is used to analyze the dispersion properties and the confinement losses in a PCF with finite number of air holes. It is shown from numerical results that it is possible to design a fourring PCF with flattened dispersion of 0 +/- 0.5 ps/(km.nm) from 1.19 m to 1.69 m wavelength range and a five-ring PCF with flattened dispersion of 0 +/- 0.4 ps/(km.nm) from 1.23 m to 1.72 m wavelength range.

675 citations

Journal ArticleDOI
TL;DR: A method of measuring strain over 30-cm intervals to an accuracy of10 microstrain in unaltered low-loss communications-grade single-modeoptical fiber is presented.
Abstract: A method of measuring strain over 30-cm intervals to an accuracy of10 microstrain in unaltered low-loss communications-grade single-modeoptical fiber is presented. The method uses a tunable external cavity diode laser to measure the reflected intensity of a reflector-fiber system as a function of wavelength. This measurement is performed with no strain applied to the fiber to produce a reference and then again after a strain has been induced. Cross correlation of the Rayleigh scatter spectra from a selected section of fiber in the strained and unstrained states determines the spectral shift resulting from the applied strain.

635 citations

Journal ArticleDOI
TL;DR: This technique will permit scaling of pulsed fiber lasers and amplifiers to significantly higher pulse energies and peak powers and cw fiber sources to higher average powers while maintaining excellent beam quality.
Abstract: The authors report a new approach to obtain single-transverse-mode operation of a multimode fiber amplifier, in which the gain fiber is coiled to induce significant bend loss for all but the lowest-order mode. They have demonstrated this method by constructing a coiled amplifier using Yb-doped, double-clad fiber with a core diameter of 25 {micro}m and NA of {minus}0.1 (V {approx} 7.4). When operated as an ASE source, the output beam had an M{sup 2} value of 1.09 {+-} 0.09; when seeded at 1,064 nm, the slope efficiency was similar to that of an uncoiled amplifier. This technique does not require exotic fiber designs or increase system complexity and is inexpensive to implement. It will allow scaling of pulsed fiber lasers and amplifiers to significantly higher pulse energies and peak powers and cw fiber sources to higher average powers while maintaining excellent beam quality.

630 citations

Journal ArticleDOI
Dietrich Marcuse1
TL;DR: In this article, the curvature loss for optical fibers with constant radius of curvature of their axes is derived by expressing the field outside of the fiber in terms of a superposition of cylindrical outgoing waves.
Abstract: The loss formula for optical fibers with constant radius of curvature of their axes is derived by expressing the field outside of the fiber in terms of a superposition of cylindrical outgoing waves. The expansion coefficients are determined by matching the superposition field to the field of the fiber along a cylindrical surface that is tangential to the outer perimeter of the curved fiber. This method is a direct extension of my derivation of the curvature-loss formula for slab guides.

620 citations

Journal ArticleDOI
TL;DR: This analysis shows that if the fiber's MFD could be increased arbitrarily, 36 kW of power could be obtained with diffraction-limited quality from a fiber laser or amplifier, but limits to the scaling of the MFD may restrict fiber lasers to lower output powers.
Abstract: We analyze the scalability of diffraction-limited fiber lasers considering thermal, non-linear, damage and pump coupling limits as well as fiber mode field diameter (MFD) restrictions. We derive new general relationships based upon practical considerations. Our analysis shows that if the fiber's MFD could be increased arbitrarily, 36 kW of power could be obtained with diffraction-limited quality from a fiber laser or amplifier. This power limit is determined by thermal and non-linear limits that combine to prevent further power scaling, irrespective of increases in mode size. However, limits to the scaling of the MFD may restrict fiber lasers to lower output powers.

613 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
95% related
Photonic crystal
43.4K papers, 887K citations
91% related
Transmission (telecommunications)
171.3K papers, 1.2M citations
86% related
Resonator
76.5K papers, 1M citations
86% related
Plasmon
32.5K papers, 983.9K citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202359
2022130
20214
20207
201911
201846