scispace - formally typeset
Search or ask a question
Topic

Disposable Equipment

About: Disposable Equipment is a research topic. Over the lifetime, 326 publications have been published within this topic receiving 3695 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A brief insight into the materials and basics of sensors (methods of transduction, molecular recognition, and amplification) is provided followed by a comprehensive and critical overview of the disposable sensors currently used for medical diagnostics, food, and environmental analysis.
Abstract: Disposable sensors are low-cost and easy-to-use sensing devices intended for short-term or rapid single-point measurements. The growing demand for fast, accessible, and reliable information in a vastly connected world makes disposable sensors increasingly important. The areas of application for such devices are numerous, ranging from pharmaceutical, agricultural, environmental, forensic, and food sciences to wearables and clinical diagnostics, especially in resource-limited settings. The capabilities of disposable sensors can extend beyond measuring traditional physical quantities (for example, temperature or pressure); they can provide critical chemical and biological information (chemo- and biosensors) that can be digitized and made available to users and centralized/decentralized facilities for data storage, remotely. These features could pave the way for new classes of low-cost systems for health, food, and environmental monitoring that can democratize sensing across the globe. Here, a brief insight into the materials and basics of sensors (methods of transduction, molecular recognition, and amplification) is provided followed by a comprehensive and critical overview of the disposable sensors currently used for medical diagnostics, food, and environmental analysis. Finally, views on how the field of disposable sensing devices will continue its evolution are discussed, including the future trends, challenges, and opportunities.

444 citations

Journal ArticleDOI
TL;DR: Progress toward development of disposable, low-cost, easy-to-use microfluidics-based diagnostics that require no instrument at all is reviewed.
Abstract: In many health care settings, it is uneconomical, impractical, or unaffordable to maintain and access a fully equipped diagnostics laboratory. Examples include home health care, developing-country health care, and emergency situations in which first responders are dealing with pandemics or biowarfare agent release. In those settings, fully disposable diagnostic devices that require no instrument support, reagent, or significant training are well suited. Although the only such technology to have found widespread adoption so far is the immunochromatographic rapid assay strip test, microfluidics holds promise to expand the range of assay technologies that can be performed in formats similar to that of a strip test. In this paper, we review progress toward development of disposable, low-cost, easy-to-use microfluidics-based diagnostics that require no instrument at all. We also present examples of microfluidic functional elements—including mixers, separators, and detectors—as well as complete microfluidic devices that function entirely without any moving parts and external power sources.

277 citations

Journal ArticleDOI
TL;DR: Analysis of the data from computational fluid dynamic simulation studies and first cultivation runs confirms that this novel bioreactor system is a viable alternative to traditional cell culture bioreactors at benchtop scale.
Abstract: Disposable bioreactors have increasingly been incorporated into preclinical, clinical, and production-scale biotechnological facilities over the last few years. Driven by market needs, and, in particular, by the developers and manufacturers of drugs, vaccines, and further biologicals, there has been a trend toward the use of disposable seed bioreactors as well as production bioreactors. Numerous studies documenting their advantages in use have contributed to further new developments and have resulted in the availability of a multitude of disposable bioreactor types which differ in power input, design, instrumentation, and scale of the cultivation container. In this review, the term “disposable bioreactor” is defined, the benefits and constraints of disposable bioreactors are discussed, and critical phases and milestones in the development of disposable bioreactors are summarized. An overview of the disposable bioreactors that are currently commercially available is provided, and the domination of wave-mixed, orbitally shaken, and, in particular, stirred disposable bioreactors in animal cell-derived productions at cubic meter scale is reported. The growth of this type of reactor system is attributed to the recent availability of stirred disposable benchtop systems such as the Mobius CellReady 3 L Bioreactor. Analysis of the data from computational fluid dynamic simulation studies and first cultivation runs confirms that this novel bioreactor system is a viable alternative to traditional cell culture bioreactors at benchtop scale.

254 citations

Journal ArticleDOI

211 citations

Journal ArticleDOI
TL;DR: The reusable LMA was found to have a more favorable environmental profile than the disposable LMA as used at Yale New Haven Hospital, and management and operating procedures should be put in place to ensure that reusable LMAs are not discarded prematurely.
Abstract: BACKGROUND: Growing awareness of the negative impacts from the practice of health care on the environment and public health calls for the routine inclusion of life cycle criteria into the decision-making process of device selection. Here we present a life cycle assessment of 2 laryngeal mask airways (LMAs), a one-time-use disposable Unique™ LMA and a 40-time-use reusable Classic™ LMA. METHODS: In life cycle assessment, the basis of comparison is called the “functional unit.” For this report, the functional unit of the disposable and reusable LMAs was taken to be maintenance of airway patency by 40 disposable LMAs or 40 uses of 1 reusable LMA. This was a cradle-to-grave study that included inputs and outputs for the manufacture, transport, use, and waste phases of the LMAs. The environmental impacts of the 2 LMAs were estimated using SimaPro life cycle assessment software and the Building for Environmental and Economic Sustainability impact assessment method. Sensitivity and simple life cycle cost analyses were conducted to aid in interpretation of the results. RESULTS: The reusable LMA was found to have a more favorable environmental profile than the disposable LMA as used at Yale New Haven Hospital. The most important sources of impacts for the disposable LMA were the production of polymers, packaging, and waste management, whereas for the reusable LMA, washing and sterilization dominated for most impact categories. DISCUSSION: The differences in environmental impacts between these devices strongly favor reusable devices. These benefits must be weighed against concerns regarding transmission of infection. Health care facilities can decrease their environmental impacts by using reusable LMAs, to a lesser extent by selecting disposable LMA models that are not made of certain plastics, and by ordering in bulk from local distributors. Certain practices would further reduce the environmental impacts of reusable LMAs, such as increasing the number of devices autoclaved in a single cycle to 10 (−25% GHG emissions) and improving the energy efficiency of the autoclaving machines by 10% (−8% GHG emissions). For both environmental and cost considerations, management and operating procedures should be put in place to ensure that reusable LMAs are not discarded prematurely.

124 citations


Network Information
Related Topics (5)
MEDLINE
89.1K papers, 1.4M citations
76% related
Health care
342.1K papers, 7.2M citations
71% related
Prospective cohort study
38.5K papers, 1.8M citations
68% related
Intensive care
98.9K papers, 3.1M citations
67% related
Placebo
43K papers, 2.5M citations
67% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20215
20207
20197
20186
20171
20167