scispace - formally typeset
Search or ask a question
Topic

Dissipation

About: Dissipation is a research topic. Over the lifetime, 22133 publications have been published within this topic receiving 448462 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Two simple, but representative, models of bistable devices are subjected to a more detailed analysis of switching kinetics to yield the relationship between speed and energy dissipation, and to estimate the effects of errors induced by thermal fluctuations.
Abstract: It is argued that computing machines inevitably involve devices which perform logical functions that do not have a single-valued inverse. This logical irreversibility is associated with physical irreversibility and requires a minimal heat generation, per machine cycle, typically of the order of kT for each irreversible function. This dissipation serves the purpose of standardizing signals and making them independent of their exact logical history. Two simple, but representative, models of bistable devices are subjected to a more detailed analysis of switching kinetics to yield the relationship between speed and energy dissipation, and to estimate the effects of errors induced by thermal fluctuations.

3,629 citations

Journal ArticleDOI
TL;DR: In this paper, a linear dissipative mechanism whose Q is almost frequency independent over large frequency ranges has been investigated by introducing fractional derivatives in the stressstrain relation, and a rigorous proof of the formulae to be used in obtaining the analytic expression of Q is given.
Abstract: Summary Laboratory experiments and field observations indicate that the Q of many non-ferromagnetic inorganic solids is almost frequency independent in the range 10-2-107 cis, although no single substance has been investigated over the entire frequency spectrum. One of the purposes of this investigation is to find the analytic expression for a linear dissipative mechanism whose Q is almost frequency independent over large frequency ranges. This will be obtained by introducing fractional derivatives in the stressstrain relation. Since the aim of this research is also to contribute to elucidating the dissipating mechanism in the Earth free modes, we shall treat the dissipation in the free, purely torsional, modes of a shell. The dissipation in a plane wave will also be treated. The theory is checked with the new values determined for the Q of spheroidal free modes of the Earth in the range between 10 and 5 min integrated with the Q of Rayleigh waves in the range between 5 and 0.6 min. Another check of the theory is made with the experimental values of the Q of the longitudinal waves in an aluminium rod in the range between lo-’ and 10-3s. In both checks the theory represents the observed phenomena very satisfactorily. The time derivative which enters the stress-strain relation in both cases is of order 0.15. The present paper is a generalized version of another (Caputo 1966b) in which an elementary definition of some differential operators was used. In this paper we give also a rigorous proof of the formulae to be used in obtaining the analytic expression of Q; moreover, we present two checks of the theory with experimental data. The present paper is a generalized version of another (Caputo 1966b) in which an elementary definition of some differential operators was used. In this paper we give also a rigorous proof of the formulae to be used in obtaining the analytic expression of Q; moreover, we present two checks of the theory with experimental data. In a homogeneous isotropic elastic field the elastic properties of the substance are specified by a description of the strains and stresses in a limited portion of the field since the strains and stresses are linearly related by two parameters which describe the elastic properties of the field. If the elastic field is not homogeneous nor isotropic the properties of the field are specified in a similar manner by a larger number of parameters which also depend on the position.

3,372 citations

01 Jan 1973
TL;DR: In this article, wave spectra were measured along a profile extending 160 kilometers into the North Sea westward from Sylt for a period of two weeks in 1968 and 1969, with particular emphasis on wave growth under stationary offshore wind conditions and the attenuation of swell in water of finite depth.
Abstract: "Wave spectra were measured along a profile extending 160 kilometers into the North Sea westward from Sylt for a period often weeks in 1968 and 1969. During the main experiment in July 1969, thirteen wave stations were in operation, of which six stations continued measurements into the first two weeks of August. A smaller pilot experiment was carried out in September 1968. Currents, tides, air-sea temperature differences and turbulence in the atmospheric boundary layer were also measured. The goal of the experiment (described in Part 1) was to determine the structure of the source function governing the energy balance of the wave spectrum, with particular emphasis on wave growth under stationary offshore wind conditions (Part 2) and the attenuation of swell in water of finite depth (Part 3). The source functions of wave spectra generated by offshore winds exhibit a characteristic plus-minus signature associated with the shift of the sharp spectral peak towards lower frequencies. The two-lobed distribution of the source function can be explained quantitatively by the nonlinear transfer due to resonant wave-wave interactions (second order Bragg scattering). The evolution of a pronounced peak and its shift towards lower frequencies can also be understood as a selfstabilizing feature of this process. For small fetches, the principal energy balance is between the input by wind in the central region of the spectrum and the nonlinear transfer of energy away from this region to short waves, where it is dissipated, and to longer waves. Most of the wave growth on the forward face of the spectrum can be attributed to the nonlinear transfer to longer waves. For short fetches, approximately (80 ± 20) % of the momentum transferred across the air/sea interface enters the wave field, in agreement with Dobson's direct measurements of the work done on the waves by surface pressures. About 80-90 % of the wave-induced momentum flux passes into currents via the nonlinear transfer to short waves and subsequent dissipation; the rest remains in the wave field and is advected away. At larger fetches the interpretation of the energy balance becomes more ambiguous on account of the unknown dissipation in the low-frequency part of the spectrum. Zero dissipation in this frequency range yields a minimal atmospheric momentum flux into the wave field of the order of (10 to 40) % of the total momentum transfer across the air-sea interface -- but ratios up to 100 % are conceivable if dissipation is important. In general, the ratios (as inferred from the nonlinear energy transfer) lie within these limits over a wide (five-decade) range of fetches encompassing both wave-tank and the present field data, suggesting that the scales of the spectrum continually adjust such that the wave-wave interactions just balance the energy input from the wind. This may explain, among other features, the observed decrease of Phillips' "constant" with fetch. The decay rates determined for incoming swell varied considerably, but energy attenuation factors of two along the length of the profile were typical. This is in order of magnitude agreement with expected damping rates due to bottom friction. However, the strong tidal modulation predicted by theory for the case of a quadratic bottom friction law was not observed. Adverse winds did not affect the decay rate. Computations also rule out wave-wave interactions or dissipation due to turbulence outside the bottom boundary layer as effective mechanisms of swell attenuation. We conclude that either the generally accepted friction law needs to be significantly modified or that some other mechanism, such as scattering by bottom irregularities, is the cause of the attenuation. The dispersion characteristics of the swells indicated rather nearby origins, for which the classical (i event model was generally inapplicable. A strong Doppler modulation by tidal currents was also observed.

3,264 citations

Journal ArticleDOI
TL;DR: Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production.
Abstract: Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics such as work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. For a basic Markovian dynamics implemented either on the continuum level with Langevin equations or on a discrete set of states as a master equation, thermodynamic consistency imposes a local-detailed balance constraint on noise and rates, respectively. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation–dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production. (Some figures may appear in colour only in the online journal) This article was invited by Erwin Frey.

2,834 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
88% related
Boundary value problem
145.3K papers, 2.7M citations
87% related
Turbulence
112.1K papers, 2.7M citations
85% related
Particle
96.5K papers, 1.9M citations
84% related
Magnetic field
167.5K papers, 2.3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,557
20225,025
20211,126
20201,242
20191,281
20181,197