scispace - formally typeset
Search or ask a question
Topic

Distance

About: Distance is a research topic. Over the lifetime, 1933 publications have been published within this topic receiving 68872 citations. The topic is also known as: Euclidian distance & Euclidean distance.


Papers
More filters
Journal ArticleDOI
TL;DR: A tree is a graph with one and only one path between every two nodes, where at least one path exists between any two nodes and the length of each branch is given.
Abstract: We consider n points (nodes), some or all pairs of which are connected by a branch; the length of each branch is given. We restrict ourselves to the case where at least one path exists between any two nodes. We now consider two problems. Problem 1. Constrnct the tree of minimum total length between the n nodes. (A tree is a graph with one and only one path between every two nodes.) In the course of the construction that we present here, the branches are subdivided into three sets: I. the branches definitely assignec~ to the tree under construction (they will form a subtree) ; II. the branches from which the next branch to be added to set I, will be selected ; III. the remaining branches (rejected or not yet considered). The nodes are subdivided into two sets: A. the nodes connected by the branches of set I, B. the remaining nodes (one and only one branch of set II will lead to each of these nodes), We start the construction by choosing an arbitrary node as the only member of set A, and by placing all branches that end in this node in set II. To start with, set I is empty. From then onwards we perform the following two steps repeatedly. Step 1. The shortest branch of set II is removed from this set and added to

22,704 citations

Journal ArticleDOI
01 Oct 1959
TL;DR: In this paper, it was shown that the length of the shortest closed path through n points in a bounded plane region of area v is almost always asymptotically proportional to √(nv) for large n; and this result was extended to bounded Lebesgue sets in k-dimensional Euclidean space.
Abstract: We prove that the length of the shortest closed path through n points in a bounded plane region of area v is ‘almost always’ asymptotically proportional to √(nv) for large n; and we extend this result to bounded Lebesgue sets in k–dimensional Euclidean space. The constants of proportionality depend only upon the dimensionality of the space, and are independent of the shape of the region. We give numerical bounds for these constants for various values of k; and we estimate the constant in the particular case k = 2. The results are relevant to the travelling-salesman problem, Steiner's street network problem, and the Loberman—Weinberger wiring problem. They have possible generalizations in the direction of Plateau's problem and Douglas' problem.

902 citations

Proceedings ArticleDOI
23 Jan 2005
TL;DR: Experimental results show that the most efficient of the new shortest path algorithms outperforms previous algorithms, in particular A* search with Euclidean bounds, by a wide margin on road networks and on some synthetic problem families.
Abstract: We propose shortest path algorithms that use A* search in combination with a new graph-theoretic lower-bounding technique based on landmarks and the triangle inequality. Our algorithms compute optimal shortest paths and work on any directed graph. We give experimental results showing that the most efficient of our new algorithms outperforms previous algorithms, in particular A* search with Euclidean bounds, by a wide margin on road networks and on some synthetic problem families.

867 citations

Proceedings ArticleDOI
20 Nov 1994
TL;DR: K shortest paths are given for finding the k shortest paths connecting a pair of vertices in a digraph, and applications to dynamic programming problems including the knapsack problem, sequence alignment, and maximum inscribed polygons are described.
Abstract: We give algorithms for finding the k shortest paths (not required to be simple) connecting a pair of vertices in a digraph. Our algorithms output an implicit representation of these paths in a digraph with n vertices and m edges, in time O(m+n log n+k). We can also find the k shortest paths from a given source s to each vertex in the graph, in total time O(m+n log n+kn). We describe applications to dynamic programming problems including the knapsack problem, sequence alignment, and maximum inscribed polygons. >

750 citations

Journal ArticleDOI
TL;DR: A stochastic version of the classical shortest path problem whereby for each node of a graph, the authors must choose a probability distribution over the set of successor nodes so as to reach a certain destination node with minimum expected cost is considered.
Abstract: We consider a stochastic version of the classical shortest path problem whereby for each node of a graph, we must choose a probability distribution over the set of successor nodes so as to reach a certain destination node with minimum expected cost. The costs of transition between successive nodes can be positive as well as negative. We prove natural generalizations of the standard results for the deterministic shortest path problem, and we extend the corresponding theory for undiscounted finite state Markovian decision problems by removing the usual restriction that costs are either all nonnegative or all nonpositive.

578 citations


Network Information
Related Topics (5)
Time complexity
36K papers, 879.5K citations
88% related
Approximation algorithm
23.9K papers, 654.3K citations
86% related
Combinatorial optimization
12.2K papers, 527.4K citations
86% related
Graph theory
20.8K papers, 691.4K citations
85% related
Data structure
28.1K papers, 608.6K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20239
202226
202142
202041
201944
201849