scispace - formally typeset
Search or ask a question
Topic

Distance transform

About: Distance transform is a research topic. Over the lifetime, 2886 publications have been published within this topic receiving 59481 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The purpose of this paper is to generalize these distance transformation families to higher dimensions and to compare the computed distances with the Euclidean distance.
Abstract: In many applications of digital picture processing, distances from certain feature elements to the nonfeature elements must be computed. In two dimensions at least four different families of distance transformations have been suggested, the most popular one being the city block/chessboard distance family. The purpose of this paper is twofold: To generalize these transformations to higher dimensions and to compare the computed distances with the Euclidean distance. All of the four distance transformation families are presented in three dimensions, and the two fastest ones are presented in four and arbitrary dimensions. The comparison with Euclidean distance is given as upper limits for the difference between the Euclidean distance and the computed distances.

870 citations

Journal ArticleDOI
James Lee Hafner1, Harpreet Sawhney1, W. Equitz1, Myron D. Flickner1, W. Niblack1 
TL;DR: In this paper, the authors proposed the use of low-dimensional, simple to compute distance measures between the color distributions, and showed that these are lower bounds on the histogram distance measure.
Abstract: In image retrieval based on color, the weighted distance between color histograms of two images, represented as a quadratic form, may be defined as a match measure. However, this distance measure is computationally expensive and it operates on high dimensional features (O(N)). We propose the use of low-dimensional, simple to compute distance measures between the color distributions, and show that these are lower bounds on the histogram distance measure. Results on color histogram matching in large image databases show that prefiltering with the simpler distance measures leads to significantly less time complexity because the quadratic histogram distance is now computed on a smaller set of images. The low-dimensional distance measure can also be used for indexing into the database. >

822 citations

Journal ArticleDOI
TL;DR: In this paper, the authors propose a scalable Internet-wide architecture, called IDMaps, which measures and disseminates distance information on the global Internet, and present solutions to the measurement server placement and distance map construction problems in IDMaps.
Abstract: There is an increasing need to quickly and efficiently learn network distances, in terms of metrics such as latency or bandwidth, between Internet hosts. For example, Internet content providers often place data and server mirrors throughout the Internet to improve access latency for clients, and it is necessary to direct clients to the nearest mirrors based on some distance metric in order to realize the benefit of the mirrors. We suggest a scalable Internet-wide architecture, called IDMaps, which measures and disseminates distance information on the global Internet. Higher level services can collect such distance information to build a virtual distance map of the Internet and estimate the distance between any pair of IP addresses. We present our solutions to the measurement server placement and distance map construction problems in IDMaps. We show that IDMaps can indeed provide useful distance estimations to applications such as nearest mirror selection.

511 citations

Journal ArticleDOI
TL;DR: Two linear time algorithms for computing the Euclidean distance transform of a two-dimensional binary image are presented based on the construction and regular sampling of the Voronoi diagram whose sites consist of the unit pixels in the image.
Abstract: Two linear time (and hence asymptotically optimal) algorithms for computing the Euclidean distance transform of a two-dimensional binary image are presented. The algorithms are based on the construction and regular sampling of the Voronoi diagram whose sites consist of the unit (feature) pixels in the image. The first algorithm, which is of primarily theoretical interest, constructs the complete Voronoi diagram. The second, more practical, algorithm constructs the Voronoi diagram where it intersects the horizontal lines passing through the image pixel centers. Extensions to higher dimensional images and to other distance functions are also discussed. >

457 citations

Proceedings ArticleDOI
27 Jun 2016
TL;DR: It is demonstrated that hand-crafted features can provide complementary information to enhance performance of saliency detection that utilizes only high level features.
Abstract: Recent advances in saliency detection have utilized deep learning to obtain high level features to detect salient regions in a scene. These advances have demonstrated superior results over previous works that utilize hand-crafted low level features for saliency detection. In this paper, we demonstrate that hand-crafted features can provide complementary information to enhance performance of saliency detection that utilizes only high level features. Our method utilizes both high level and low level features for saliency detection under a unified deep learning framework. The high level features are extracted using the VGG-net, and the low level features are compared with other parts of an image to form a low level distance map. The low level distance map is then encoded using a convolutional neural network(CNN) with multiple 1 1 convolutional and ReLU layers. We concatenate the encoded low level distance map and the high level features, and connect them to a fully connected neural network classifier to evaluate the saliency of a query region. Our experiments show that our method can further improve the performance of stateof-the-art deep learning-based saliency detection methods.

452 citations


Network Information
Related Topics (5)
Image segmentation
79.6K papers, 1.8M citations
91% related
Image processing
229.9K papers, 3.5M citations
91% related
Feature (computer vision)
128.2K papers, 1.7M citations
90% related
Convolutional neural network
74.7K papers, 2M citations
89% related
Feature extraction
111.8K papers, 2.1M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20235
202217
202161
202099
2019112
201881