scispace - formally typeset
Search or ask a question
Topic

Distance transform

About: Distance transform is a research topic. Over the lifetime, 2886 publications have been published within this topic receiving 59481 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A more global analysis toward capillary ensembles is employed here, since capillaries work as a cooperative entirety, and the static and planar geometric parameters are investigated.
Abstract: BACKGROUND/AIMS: The capillary bed is recognized as the site where metabolic and nutrient processes occur for living tissues at all levels. The evaluation of this vital process is a major concern in microcirculation. Unlike traditional approaches that concentrated on the extreme local properties of this process, a more global analysis toward capillary ensembles is employed here, since capillaries work as a cooperative entirety. As a first step toward ensemble analysis, the static and planar geometric parameters are investigated. Parameters such as the capillary adjacency and size information are very important in predicting and analysing certain malfunctions in the microvascular bed. METHODS/RESULTS: In order to achieve an objective and accurate analysis of these vital parameters, a computerized imaging system is proposed. Not only the number of capillaries and the capillary cross-sectional areas are important in describing the microvascular bed but the planar distribution pattern of the capillaries also carries valid information. This information, unique to the ensemble analysis, can be used to reveal, visualise and quantify the clustering of capillaries; and this information, according to the Krogh model, is fundamental in estimating the tissue oxygen supply. Two spatial models, the closest neighbor and triangulation methods, have been applied to the captured images of capillary ensembles. The closest neighbor technique generates a minimal distance map or displays a distribution, which depicts the local clustering of capillaries. The triangulation technique, on the other hand, generates a mutual distance map, which is a global description of the capillary positions. Triangulation methods have been evaluated but all except the Greedy triangulation method have been rejected due to lack of robustness and model weakness. Therefore, the capillaries are triangulated by the Greedy triangulation method, and the capillary distribution uniformity is defined as one minus the coefficient of variance of the edge lengths of the mutual distance map. CONCLUSIONS: A series of advanced image processing methods have been developed that efficiently extract the capillary position, size and distribution information from the images. These results facilitate the automatic counting of capillaries and the capillary size-related pathological analysis.

35 citations

Journal ArticleDOI
TL;DR: It is proved that, for any point lattice, the sequential two-scan chamfer algorithm produces correct distance maps and the definitions and computation of weighted distances are applied to the face- centered cubic and body-centered cubic grids.

35 citations

Patent
10 Jun 2013
TL;DR: In this article, a 3D image is obtained from a camera and depth information is used to determine the relative distances of objects in the image, and image blur is applied to the identified additional object based on the distance between the 3D camera and the subject object.
Abstract: Blurring is simulated in post-processing for captured images. A 3D image is received from a 3D camera, and depth information in the 3D image is used to determine the relative distances of objects in the image. One object is chosen as the subject of the image, and an additional object in the image is identified. Image blur is applied to the identified additional object based on the distance between the 3D camera and the subject object, the distance between the subject object and the additional object, and a virtual focal length and virtual f-number.

35 citations

Patent
19 May 2009
TL;DR: In this paper, a method for simulating the milling of an object by moving a shape along a path intersecting the object is presented, where a composite adaptively sampled distance field (ADF) is generated to represent the object.
Abstract: Provided is a method performed on a processor for simulating the milling of an object by moving a shape along a path intersecting the object. A composite adaptively sampled distance field (ADF) is generated to represent the object, where the composite ADF includes a set of cells. Each cell in the composite ADF includes a set of distance fields and a procedural reconstruction method for reconstructing the object within the cell. The shape is represented by a shape distance field. The path is represented by a parametric function. A swept volume distance field is defined in a continuous manner to represent a swept volume generated by moving the shape along the path according to a swept volume reconstruction method which reconstructs the swept volume distance field at a sample point. The composite ADF is edited to incorporate the swept volume distance field into the composite ADF to simulate the milling.

35 citations

Book ChapterDOI
01 Sep 1999
TL;DR: A 2D algorithm is proposed that implements the matching of two sets of points, a reference one and a measured one, in a computationally efficient way for defect detection in 2D and 3D shapes.
Abstract: The problem of defect detection in 2D and 3D shapes is analyzed. A shape is represented by a set of its contour, or surface, points. Mathematically, the problem is formulated as a specific matching of two sets of points, a reference one and a measured one. Modified Hausdorff distance between these two point sets is used to induce the matching. Based on a distance transform, a 2D algorithm is proposed that implements the matching in a computationally efficient way. The method is applied to visual inspection and dimensional measurement of ferrite cores. Alternative approaches to the problem are also discussed.1

35 citations


Network Information
Related Topics (5)
Image segmentation
79.6K papers, 1.8M citations
91% related
Image processing
229.9K papers, 3.5M citations
91% related
Feature (computer vision)
128.2K papers, 1.7M citations
90% related
Convolutional neural network
74.7K papers, 2M citations
89% related
Feature extraction
111.8K papers, 2.1M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20235
202217
202161
202099
2019112
201881