scispace - formally typeset
Search or ask a question
Topic

Distributed algorithm

About: Distributed algorithm is a research topic. Over the lifetime, 20416 publications have been published within this topic receiving 548109 citations.


Papers
More filters
Proceedings ArticleDOI
22 Jun 2013
TL;DR: LabelRankT as discussed by the authors is an on-line distributed algorithm for detecting communities in large-scale dynamic networks through stabilized label propagation, which improves the quality of the detected communities compared to dynamic detection methods and matches the quality achieved by static detection approaches.
Abstract: An increasingly important challenge in network analysis is efficient detection and tracking of communities in dynamic networks for which changes arrive as a stream. There is a need for algorithms that can incrementally update and monitor communities whose evolution generates huge real-time data streams, such as the Internet or on-line social networks. In this paper, we propose LabelRankT, an on-line distributed algorithm for detection of communities in large-scale dynamic networks through stabilized label propagation. Results of tests on real-world networks demonstrate that LabelRankT has much lower computational costs than other algorithms. It also improves the quality of the detected communities compared to dynamic detection methods and matches the quality achieved by static detection approaches. Unlike most of other algorithms which apply only to binary networks, LabelRankT works on weighted and directed networks, which provides a flexible and promising solution for real-world applications.

117 citations

Journal ArticleDOI
TL;DR: A perspective on DDM algorithms in the context of multi-agents systems is offered and challenges for clustering in sensor-network environments, potential shortcomings of the current algorithms, and future work accordingly are described.

116 citations

Proceedings ArticleDOI
14 Nov 2009
TL;DR: This paper uses a task-based library to replace the existing linear algebra subroutines such as PBLAS to transparently provide the same interface and computational function as the ScaLAPACK library to execute dense linear algebra algorithms on multicore systems.
Abstract: This paper presents a dynamic task scheduling approach to executing dense linear algebra algorithms on multicore systems (either shared-memory or distributed-memory). We use a task-based library to replace the existing linear algebra subroutines such as PBLAS to transparently provide the same interface and computational function as the ScaLAPACK library. Linear algebra programs are written with the task-based library and executed by a dynamic runtime system. We mainly focus our runtime system design on the metric of performance scalability. We propose a distributed algorithm to solve data dependences without process cooperation. We have implemented the runtime system and applied it to three linear algebra algorithms: Cholesky, LU, and QR factorizations. Our experiments on both shared-memory machines (16, 32 cores) and distributed-memory machines (1024 cores) demonstrate that our runtime system is able to achieve good scalability. Furthermore, we provide analytical analysis to show why the tiled algorithms are scalable and the expected execution time.

116 citations

Journal ArticleDOI
TL;DR: Compared with other state-of-the-art anomaly detection methods, the proposed distributed algorithms not only show good anomaly detection performance, but also require relatively short running time and low CPU memory consumption.
Abstract: Anomaly detection has attracted much attention in recent years since it plays a crucial role in many domains. Various anomaly detection approaches have been proposed, among which one-class support vector machine (OCSVM) is a popular one. In practice, data used for anomaly detection can be distributively collected via wireless sensor networks. Besides, as the data usually arrive at the nodes sequentially, online detection method that can process streaming data is preferred. In this paper, we formulate a distributed online OCSVM for anomaly detection over networks and get a decentralized cost function. To get the decentralized implementation without transmitting the original data, we use a random approximate function to replace the kernel function. Furthermore, to find an appropriate approximate dimension, we add a sparse constraint into the decentralized cost function to get another one. Then we minimize these two cost functions by stochastic gradient descent and derive two distributed algorithms. Some theoretical analysis and experiments are performed to show the effectiveness of the proposed algorithms. Experimental results on both synthetic and real datasets reveal that both of the proposed algorithms achieve low misdetection rates and high true positive rates. Compared with other state-of-the-art anomaly detection methods, the proposed distributed algorithms not only show good anomaly detection performance, but also require relatively short running time and low CPU memory consumption.

116 citations

Journal ArticleDOI
TL;DR: A set of distributed algorithms for estimating the electro-mechanical oscillation modes of large power system networks using synchrophasors is presented and three different communication and computational architectures by which estimators located at the control centers of various utility companies can run local optimization algorithms using local PMU data, and thereafter communicate with other estimators to reach a global solution.
Abstract: In this paper, we present a set of distributed algorithms for estimating the electro-mechanical oscillation modes of large power system networks using synchrophasors. With the number of phasor measurement units (PMUs) in the North American grid scaling up to the thousands, system operators are gradually inclining toward distributed cyber-physical architectures for executing wide-area monitoring and control operations. Traditional centralized approaches, in fact, are anticipated to become untenable soon due to various factors such as data volume, security, communication overhead, and failure to adhere to real-time deadlines. To address this challenge, we propose three different communication and computational architectures by which estimators located at the control centers of various utility companies can run local optimization algorithms using local PMU data, and thereafter communicate with other estimators to reach a global solution. Both synchronous and asynchronous communications are considered. Each architecture integrates a centralized Prony-based algorithm with several variants of alternating direction method of multipliers (ADMM). We discuss the relative advantages and bottlenecks of each architecture using simulations of IEEE 68-bus and IEEE 145-bus power system, as well as an Exo-GENI-based software defined network.

116 citations


Network Information
Related Topics (5)
Server
79.5K papers, 1.4M citations
94% related
Scheduling (computing)
78.6K papers, 1.3M citations
91% related
Network packet
159.7K papers, 2.2M citations
91% related
Wireless network
122.5K papers, 2.1M citations
91% related
Wireless sensor network
142K papers, 2.4M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202381
2022135
2021583
2020759
2019876
2018845