scispace - formally typeset
Search or ask a question
Topic

Distributed algorithm

About: Distributed algorithm is a research topic. Over the lifetime, 20416 publications have been published within this topic receiving 548109 citations.


Papers
More filters
Journal ArticleDOI
He Chen1, Yonghui Li1, Yunxiang Jiang, Yuanye Ma1, Branka Vucetic1 
TL;DR: In this paper, a distributed power splitting framework using game theory was developed to derive a profile of power splitting ratios for all relays that can achieve a good network-wide performance.
Abstract: In this paper, we consider simultaneous wireless information and power transfer (SWIPT) in relay interference channels, where multiple source-destination pairs communicate through their dedicated energy harvesting relays. Each relay needs to split its received signal from sources into two streams: one for information forwarding and the other for energy harvesting. We develop a distributed power splitting framework using game theory to derive a profile of power splitting ratios for all relays that can achieve a good network-wide performance. Specifically, non-cooperative games are respectively formulated for pure amplify-and-forward (AF) and decode-and-forward (DF) networks, in which each link is modeled as a strategic player who aims to maximize its own achievable rate. The existence and uniqueness for the Nash equilibriums (NEs) of the formulated games are analyzed and a distributed algorithm with provable convergence to achieve the NEs is also developed. Subsequently, the developed framework is extended to the more general network setting with mixed AF and DF relays. All the theoretical analyses are validated by extensive numerical results. Simulation results show that the proposed game-theoretical approach can achieve a near-optimal network-wide performance on average, especially for the scenarios with relatively low and moderate interference.

187 citations

Proceedings ArticleDOI
05 Nov 2003
TL;DR: The DFuse architectural framework, DFuse, consists of a data fusion API and a distributed algorithm for energy-aware role assignment that enables an application to be specified as a coarse-grained dataflow graph, and eases application development and deployment.
Abstract: Simple in-network data aggregation (or fusion) techniques for sensor networks have been the focus of several recent research efforts, but they are insufficient to support advanced fusion applications. We extend these techniques to future sensor networks and ask two related questions: (a) what is the appropriate set of data fusion techniques, and (b) how do we dynamically assign aggregation roles to the nodes of a sensor network. We have developed an architectural framework, DFuse, for answering these two questions. It consists of a data fusion API and a distributed algorithm for energy-aware role assignment. The fusion API enables an application to be specified as a coarse-grained dataflow graph, and eases application development and deployment. The role assignment algorithm maps the graph onto the network, and optimally adapts the mapping at run-time using role migration. Experiments on an iPAQ farm show that, the fusion API has low-overhead, and the role assignment algorithm with role migration significantly increases the network lifetime compared to any static assignment.

187 citations

Journal ArticleDOI
TL;DR: This work designs a distributed algorithm that enables the sensor nodes to solve these edge-based convex programs locally by communicating only with their close neighbors by using the alternating direction method of multipliers (ADMM).
Abstract: We propose a class of convex relaxations to solve the sensor network localization problem, based on a maximum likelihood (ML) formulation. This class, as well as the tightness of the relaxations, depends on the noise probability density function (PDF) of the collected measurements. We derive a computational efficient edge-based version of this ML convex relaxation class and we design a distributed algorithm that enables the sensor nodes to solve these edge-based convex programs locally by communicating only with their close neighbors. This algorithm relies on the alternating direction method of multipliers (ADMM), it converges to the centralized solution, it can run asynchronously, and it is computation error-resilient. Finally, we compare our proposed distributed scheme with other available methods, both analytically and numerically, and we argue the added value of ADMM, especially for large-scale networks.

187 citations

Journal ArticleDOI
TL;DR: It is proved that even in this simple case, the optimization problem is NP-hard, and some efficient, scalable, and distributed heuristic approximation algorithms are proposed for solving this problem and the total transmission cost can be significantly improved over direct transmission or the shortest path tree.
Abstract: We consider the problem of correlated data gathering by a network with a sink node and a tree-based communication structure, where the goal is to minimize the total transmission cost of transporting the information collected by the nodes, to the sink node. For source coding of correlated data, we consider a joint entropy-based coding model with explicit communication where coding is simple and the transmission structure optimization is difficult. We first formulate the optimization problem definition in the general case and then we study further a network setting where the entropy conditioning at nodes does not depend on the amount of side information, but only on its availability. We prove that even in this simple case, the optimization problem is NP-hard. We propose some efficient, scalable, and distributed heuristic approximation algorithms for solving this problem and show by numerical simulations that the total transmission cost can be significantly improved over direct transmission or the shortest path tree. We also present an approximation algorithm that provides a tree transmission structure with total cost within a constant factor from the optimal.

187 citations

01 Jan 2005
TL;DR: In this paper, the authors present a new framework for the crucial challenge of self-organization of a large sensor network, where the objective is to develop algorithms and protocols that allow selforganisation of the swarm into large-scale structures that reflect the structure of the street network, setting the stage for global routing, tracking and guiding algorithms.
Abstract: We present a new framework for the crucial challenge of self-organization of a large sensor network. The basic scenario can be described as follows: Given a large swarm of immobile sensor nodes that have been scattered in a polygonal region, such as a street network. Nodes have no knowledge of size or shape of the environment or the position of other nodes. Moreover, they have no way of measuring coordinates, geometric distances to other nodes, or their direction. Their only way of interacting with other nodes is to send or to receive messages from any node that is within communication range. The objective is to develop algorithms and protocols that allow self-organization of the swarm into large-scale structures that reflect the structure of the street network, setting the stage for global routing, tracking and guiding algorithms. Our algorithms work in two stages: boundary recognition and topology extraction. All steps are strictly deterministic, yield fast distributed algorithms, and make no assumption on the distribution of nodes in the environment, other than sufficient density.

186 citations


Network Information
Related Topics (5)
Server
79.5K papers, 1.4M citations
94% related
Scheduling (computing)
78.6K papers, 1.3M citations
91% related
Network packet
159.7K papers, 2.2M citations
91% related
Wireless network
122.5K papers, 2.1M citations
91% related
Wireless sensor network
142K papers, 2.4M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202381
2022135
2021583
2020759
2019876
2018845