scispace - formally typeset
Search or ask a question
Topic

Distributed algorithm

About: Distributed algorithm is a research topic. Over the lifetime, 20416 publications have been published within this topic receiving 548109 citations.


Papers
More filters
Posted Content
TL;DR: In this article, distributed synchronous and asynchronous algorithms for information exchange and equilibrium computation over a networked system were studied. And the almost-sure convergence of the obtained sequences to the equilibrium point was established.
Abstract: We consider a class of Nash games, termed as aggregative games, being played over a networked system. In an aggregative game, a player's objective is a function of the aggregate of all the players' decisions. Every player maintains an estimate of this aggregate, and the players exchange this information with their local neighbors over a connected network. We study distributed synchronous and asynchronous algorithms for information exchange and equilibrium computation over such a network. Under standard conditions, we establish the almost-sure convergence of the obtained sequences to the equilibrium point. We also consider extensions of our schemes to aggregative games where the players' objectives are coupled through a more general form of aggregate function. Finally, we present numerical results that demonstrate the performance of the proposed schemes.

184 citations

Journal ArticleDOI
TL;DR: Two algorithms are proposed: a centralized deployment algorithm and a distributed motion control algorithm that enables each UAV to autonomously control its motion, find the UEs and converge to on-demand coverage and the connectivity of the UAV network is maintained.
Abstract: Due to the flying nature of unmanned aerial vehicles (UAVs), it is very attractive to deploy UAVs as aerial base stations and construct airborne networks to provide service for on-ground users at temporary events (such as disaster relief, military operation, and so on). In the constructing of UAV airborne networks, a challenging problem is how to deploy multiple UAVs for on-demand coverage while at the same time maintaining the connectivity among UAVs. To solve this problem, we propose two algorithms: a centralized deployment algorithm and a distributed motion control algorithm. The first algorithm requires the positions of user equipments (UEs) on the ground and provides the optimal deployment result (i.e., the minimal number of UAVs and their respective positions) after a global computation. This algorithm is applicable to the scenario that requires a minimum number of UAVs to provide desirable service for already known on-ground UEs. Differently, the second algorithm requires no global information or computation, instead, it enables each UAV to autonomously control its motion, find the UEs and converge to on-demand coverage. This distributed algorithm is applicable to the scenario where using a given number of UAVs to cover UEs without UEs’ specific position information. In both algorithms, the connectivity of the UAV network is maintained. Extensive simulations validate our proposed algorithms.

184 citations

Journal ArticleDOI
TL;DR: A novel distributed-consensus alternating direction method of multipliers (ADMM) algorithm, which contains a dynamic average consensus algorithm and distributed ADMM algorithm, is presented to solve the optimal energy management problem of energy Internet.
Abstract: In this paper, a novel energy management framework for energy Internet with many energy bodies is presented, which features multicoupling of different energy forms, diversified energy roles, and peer-to-peer energy supply/demand, etc. The energy body as an integrated energy unit, which may have various functionalities and play multiple roles at the same time, is formulated for the system model development. Forecasting errors, confidence intervals, and penalty factor are also taken into account to model renewable energy resources to provide tradeoff between optimality and possibility. Furthermore, a novel distributed-consensus alternating direction method of multipliers (ADMM) algorithm, which contains a dynamic average consensus algorithm and distributed ADMM algorithm, is presented to solve the optimal energy management problem of energy Internet. The proposed algorithm can effectively handle the problems of power-heat-gas-coupling, global constraint limits, and nonlinear objective function. With this effort, not only the optimal energy market clearing price but also the optimal energy outputs/demands can be obtained through only local communication and computation. Simulation results are presented to illustrate the effectiveness of the proposed distributed algorithm.

184 citations

Book ChapterDOI
James McLurkin1, Jennifer Smith1
01 Jan 2007
TL;DR: A set of distributed algorithms used to disperse a large group of autonomous mobile robots efficiently throughout an indoor environment and maintains a route to chargers to allow self-charging.
Abstract: We describe a set of distributed algorithms used to disperse a large group of autonomous mobile robots efficiently throughout an indoor environment. Only local inter-robot communication and processing is used. Ad-hoc communications network topologies formed by gradient floods spread messages and guide robot motion. Special attention has been given to doors, hallways, and other constrictions. The network maintains a route to chargers to allow self-charging.

184 citations

Journal ArticleDOI
TL;DR: In a thorough simulation-based performance evaluation, the proposed broadcast algorithm is shown to provide higher reliability and message efficiency than existing approaches for nonsafety applications.
Abstract: We propose a broadcast algorithm suitable for a wide range of vehicular scenarios, which only employs local information acquired via periodic beacon messages, containing acknowledgments of the circulated broadcast messages. Each vehicle decides whether it belongs to a connected dominating set (CDS). Vehicles in the CDS use a shorter waiting period before possible retransmission. At time-out expiration, a vehicle retransmits if it is aware of at least one neighbor in need of the message. To address intermittent connectivity and appearance of new neighbors, the evaluation timer can be restarted. Our algorithm resolves propagation at road intersections without any need to even recognize intersections. It is inherently adaptable to different mobility regimes, without the need to classify network or vehicle speeds. In a thorough simulation-based performance evaluation, our algorithm is shown to provide higher reliability and message efficiency than existing approaches for nonsafety applications.

183 citations


Network Information
Related Topics (5)
Server
79.5K papers, 1.4M citations
94% related
Scheduling (computing)
78.6K papers, 1.3M citations
91% related
Network packet
159.7K papers, 2.2M citations
91% related
Wireless network
122.5K papers, 2.1M citations
91% related
Wireless sensor network
142K papers, 2.4M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202381
2022135
2021583
2020759
2019876
2018845