scispace - formally typeset
Search or ask a question
Topic

Distributed coordination function

About: Distributed coordination function is a research topic. Over the lifetime, 2044 publications have been published within this topic receiving 48849 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a simple but nevertheless extremely accurate, analytical model to compute the 802.11 DCF throughput, in the assumption of finite number of terminals and ideal channel conditions, is presented.
Abstract: The IEEE has standardized the 802.11 protocol for wireless local area networks. The primary medium access control (MAC) technique of 802.11 is called the distributed coordination function (DCF). The DCF is a carrier sense multiple access with collision avoidance (CSMA/CA) scheme with binary slotted exponential backoff. This paper provides a simple, but nevertheless extremely accurate, analytical model to compute the 802.11 DCF throughput, in the assumption of finite number of terminals and ideal channel conditions. The proposed analysis applies to both the packet transmission schemes employed by DCF, namely, the basic access and the RTS/CTS access mechanisms. In addition, it also applies to a combination of the two schemes, in which packets longer than a given threshold are transmitted according to the RTS/CTS mechanism. By means of the proposed model, we provide an extensive throughput performance evaluation of both access mechanisms of the 802.11 protocol.

8,072 citations

Journal ArticleDOI
TL;DR: A distributed algorithm is proposed that enables each station to tune its backoff algorithm at run-time and indicates that the capacity of the enhanced protocol is very close to the theoretical upper bound in all the configurations analyzed.
Abstract: In wireless LANs (WLANs), the medium access control (MAC) protocol is the main element that determines the efficiency in sharing the limited communication bandwidth of the wireless channel. In this paper we focus on the efficiency of the IEEE 802.11 standard for WLANs. Specifically, we analytically derive the average size of the contention window that maximizes the throughput, hereafter theoretical throughput limit, and we show that: 1) depending on the network configuration, the standard can operate very far from the theoretical throughput limit; and 2) an appropriate tuning of the backoff algorithm can drive the IEEE 802.11 protocol close to the theoretical throughput limit. Hence we propose a distributed algorithm that enables each station to tune its backoff algorithm at run-time. The performances of the IEEE 802.11 protocol, enhanced with our algorithm, are extensively investigated by simulation. Specifically, we investigate the sensitiveness of our algorithm to some network configuration parameters (number of active stations, presence of hidden terminals). Our results indicate that the capacity of the enhanced protocol is very close to the theoretical upper bound in all the configurations analyzed.

1,436 citations

Proceedings ArticleDOI
07 Nov 2002
TL;DR: This paper proposes a scheme named DCF+, which is compatible with DCF, to enhance the performance of reliable transport protocol over WLAN and introduces an analytical model to compute the saturated throughput of WLAN.
Abstract: IEEE 802.11 medium access control (MAC) is proposed to support asynchronous and time bounded delivery of radio data packets in infrastructure and ad hoc networks. The basis of the IEEE 802.11 WLAN MAC protocol is a distributed coordination function (DCF), which is a carrier sense multiple access with collision avoidance (CSMA/CA) with a binary slotted exponential back-off scheme. Since IEEE 802.11 MAC has its own characteristics that are different from other wireless MAC protocols, the performance of reliable transport protocol over 802.11 needs further study. This paper proposes a scheme named DCF+, which is compatible with DCF, to enhance the performance of reliable transport protocol over WLAN. To analyze the performance of DCF and DCF+, this paper also introduces an analytical model to compute the saturated throughput of WLAN. Compared with other models, this model is shown to be able to predict the behavior of 802.11 more accurately. Moreover, DCF+ is able to improve the performance of TCP over WLAN, which is verified by modeling and elaborate simulation results.

864 citations

Proceedings ArticleDOI
15 Oct 1996
TL;DR: This paper proposes an adaptive contention window mechanism, which dynamically selects the optimal backoff window according to the estimate of the number of contending stations, and shows that this technique leads to stable behavior, and it outperforms the standard protocol when the network load and theNumber of mobile stations are high.
Abstract: The IEEE 802.11 protocol for wireless local area networks adopts a CSMA/CA protocol with exponential backoff as medium access control technique. As the throughput performance of such a scheme becomes critical when the number of mobile stations increases, in this paper we propose an adaptive contention window mechanism, which dynamically selects the optimal backoff window according to the estimate of the number of contending stations. We show that this technique leads to stable behavior, and it outperforms the standard protocol when the network load and the number of mobile stations are high. We also investigate the CSMA/CA with the optional RTS/CTS technique, and we show that our adaptive technique reaches better performance only when the packet size is short. Finally, the performance of a system environment with hidden terminals show that the RTS/CTS mechanism, which can also be used in conjunction with the adaptive contention window mechanism, provides significant improvements.

646 citations

Journal ArticleDOI
TL;DR: In-depth simulation shows that the proposed MPDU-based link adaptation scheme outperforms the single-mode schemes and the autorate fallback (ARF) scheme-which is used in Lucent Technologies' WaveLAN-II networking devices-significantly in terms of the average goodput, the frame drop rate, and the average number of transmission attempts per data frame delivery.
Abstract: Link adaptation to dynamically select the data transmission rate at a given time has been recognized as an effective way to improve the goodput performance of the IEEE 802.11 wireless local-area networks (WLANs). Recently, with the introduction of the new high-speed 802.11a physical layer (PHY), it is even more important to have a well-designed link adaptation scheme work with the 802.11a PHY such that its multiple transmission rates can be exploited. In this paper, we first present a generic method to analyze the goodput performance of an 802.11a system under the distributed coordination function (DCF) and express the expected effective goodput as a closed-form function of the data payload length, the frame retry count, the wireless channel condition, and the selected data transmission rate. Then, based on the theoretical analysis, we propose a novel MPDU (MAC protocol data unit)-based link adaptation scheme for the 802.11a systems. It is a simple table-driven approach and the basic idea is to preestablish a best PHY mode table by applying the dynamic programming technique. The best PHY mode table is indexed by the system status triplet that consists of the data payload length, the wireless channel condition, and the frame retry count. At runtime, a wireless station determines the most appropriate PHY mode for the next transmission attempt by a simple table lookup, using the most up-to-date system status as the index. Our in-depth simulation shows that the proposed MPDU-based link adaptation scheme outperforms the single-mode schemes and the autorate fallback (ARF) scheme-which is used in Lucent Technologies' WaveLAN-II networking devices-significantly in terms of the average goodput, the frame drop rate, and the average number of transmission attempts per data frame delivery.

619 citations


Network Information
Related Topics (5)
Wireless network
122.5K papers, 2.1M citations
94% related
Wireless ad hoc network
49K papers, 1.1M citations
92% related
Network packet
159.7K papers, 2.2M citations
92% related
Wireless
133.4K papers, 1.9M citations
91% related
Wireless sensor network
142K papers, 2.4M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237
202225
202116
202036
201934
201858