scispace - formally typeset
Search or ask a question
Topic

Distributed data store

About: Distributed data store is a research topic. Over the lifetime, 6801 publications have been published within this topic receiving 112825 citations. The topic is also known as: distributed file system.


Papers
More filters
Proceedings Article
01 Jan 2006
TL;DR: Bigtable as mentioned in this paper is a distributed storage system for managing structured data that is designed to scale to a very large size: petabytes of data across thousands of commodity servers, including web indexing, Google Earth and Google Finance.
Abstract: Bigtable is a distributed storage system for managing structured data that is designed to scale to a very large size: petabytes of data across thousands of commodity servers. Many projects at Google store data in Bigtable, including web indexing, Google Earth, and Google Finance. These applications place very different demands on Bigtable, both in terms of data size (from URLs to web pages to satellite imagery) and latency requirements (from backend bulk processing to real-time data serving). Despite these varied demands, Bigtable has successfully provided a flexible, high-performance solution for all of these Google products. In this article, we describe the simple data model provided by Bigtable, which gives clients dynamic control over data layout and format, and we describe the design and implementation of Bigtable.

4,843 citations

Journal ArticleDOI
TL;DR: The simple data model provided by Bigtable is described, which gives clients dynamic control over data layout and format, and the design and implementation of Bigtable are described.
Abstract: Bigtable is a distributed storage system for managing structured data that is designed to scale to a very large size: petabytes of data across thousands of commodity servers. Many projects at Google store data in Bigtable, including web indexing, Google Earth, and Google Finance. These applications place very different demands on Bigtable, both in terms of data size (from URLs to web pages to satellite imagery) and latency requirements (from backend bulk processing to real-time data serving). Despite these varied demands, Bigtable has successfully provided a flexible, high-performance solution for all of these Google products. In this article, we describe the simple data model provided by Bigtable, which gives clients dynamic control over data layout and format, and we describe the design and implementation of Bigtable.

3,259 citations

Journal ArticleDOI
TL;DR: Cassandra is a distributed storage system for managing very large amounts of structured data spread out across many commodity servers, while providing highly available service with no single point of failure.
Abstract: Cassandra is a distributed storage system for managing very large amounts of structured data spread out across many commodity servers, while providing highly available service with no single point of failure. Cassandra aims to run on top of an infrastructure of hundreds of nodes (possibly spread across different data centers). At this scale, small and large components fail continuously. The way Cassandra manages the persistent state in the face of these failures drives the reliability and scalability of the software systems relying on this service. While in many ways Cassandra resembles a database and shares many design and implementation strategies therewith, Cassandra does not support a full relational data model; instead, it provides clients with a simple data model that supports dynamic control over data layout and format. Cassandra system was designed to run on cheap commodity hardware and handle high write throughput while not sacrificing read efficiency.

2,870 citations

Journal ArticleDOI
TL;DR: It is shown that there is a fundamental tradeoff between storage and repair bandwidth which is theoretically characterize using flow arguments on an appropriately constructed graph and regenerating codes are introduced that can achieve any point in this optimal tradeoff.
Abstract: Distributed storage systems provide reliable access to data through redundancy spread over individually unreliable nodes. Application scenarios include data centers, peer-to-peer storage systems, and storage in wireless networks. Storing data using an erasure code, in fragments spread across nodes, requires less redundancy than simple replication for the same level of reliability. However, since fragments must be periodically replaced as nodes fail, a key question is how to generate encoded fragments in a distributed way while transferring as little data as possible across the network. For an erasure coded system, a common practice to repair from a single node failure is for a new node to reconstruct the whole encoded data object to generate just one encoded block. We show that this procedure is sub-optimal. We introduce the notion of regenerating codes, which allow a new node to communicate functions of the stored data from the surviving nodes. We show that regenerating codes can significantly reduce the repair bandwidth. Further, we show that there is a fundamental tradeoff between storage and repair bandwidth which we theoretically characterize using flow arguments on an appropriately constructed graph. By invoking constructive results in network coding, we introduce regenerating codes that can achieve any point in this optimal tradeoff.

1,919 citations

Book ChapterDOI
01 Jan 2001
TL;DR: Freenet as discussed by the authors is an adaptive peer-to-peer network application that permits the publication, replication, and retrieval of data while protecting the anonymity of both authors and readers, but it does not provide any centralized location index.
Abstract: We describe Freenet, an adaptive peer-to-peer network application that permits the publication, replication, and retrieval of data while protecting the anonymity of both authors and readers. Freenet operates as a network of identical nodes that collectively pool their storage space to store data files and cooperate to route requests to the most likely physical location of data. No broadcast search or centralized location index is employed. Files are referred to in a location-independent manner, and are dynamically replicated in locations near requestors and deleted from locations where there is no interest. It is infeasible to discover the true origin or destination of a file passing through the network, and difficult for a node operator to determine or be held responsible for the actual physical contents of her own node.

1,899 citations


Network Information
Related Topics (5)
Server
79.5K papers, 1.4M citations
92% related
Network packet
159.7K papers, 2.2M citations
89% related
Wireless network
122.5K papers, 2.1M citations
88% related
Wireless sensor network
142K papers, 2.4M citations
87% related
Wireless
133.4K papers, 1.9M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202366
2022175
2021237
2020437
2019653
2018581