scispace - formally typeset
Search or ask a question
Topic

Distributed File System

About: Distributed File System is a research topic. Over the lifetime, 3486 publications have been published within this topic receiving 59415 citations.


Papers
More filters
Journal ArticleDOI
19 Oct 2003
TL;DR: This paper presents file system interface extensions designed to support distributed applications, discusses many aspects of the design, and reports measurements from both micro-benchmarks and real world use.
Abstract: We have designed and implemented the Google File System, a scalable distributed file system for large distributed data-intensive applications. It provides fault tolerance while running on inexpensive commodity hardware, and it delivers high aggregate performance to a large number of clients. While sharing many of the same goals as previous distributed file systems, our design has been driven by observations of our application workloads and technological environment, both current and anticipated, that reflect a marked departure from some earlier file system assumptions. This has led us to reexamine traditional choices and explore radically different design points. The file system has successfully met our storage needs. It is widely deployed within Google as the storage platform for the generation and processing of data used by our service as well as research and development efforts that require large data sets. The largest cluster to date provides hundreds of terabytes of storage across thousands of disks on over a thousand machines, and it is concurrently accessed by hundreds of clients. In this paper, we present file system interface extensions designed to support distributed applications, discuss many aspects of our design, and report measurements from both micro-benchmarks and real world use.

5,429 citations

Proceedings ArticleDOI
03 May 2010
TL;DR: The architecture of HDFS is described and experience using HDFS to manage 25 petabytes of enterprise data at Yahoo! is reported on.
Abstract: The Hadoop Distributed File System (HDFS) is designed to store very large data sets reliably, and to stream those data sets at high bandwidth to user applications. In a large cluster, thousands of servers both host directly attached storage and execute user application tasks. By distributing storage and computation across many servers, the resource can grow with demand while remaining economical at every size. We describe the architecture of HDFS and report on experience using HDFS to manage 25 petabytes of enterprise data at Yahoo!.

5,005 citations

Proceedings ArticleDOI
06 Nov 2006
TL;DR: Performance measurements under a variety of workloads show that Ceph has excellent I/O performance and scalable metadata management, supporting more than 250,000 metadata operations per second.
Abstract: We have developed Ceph, a distributed file system that provides excellent performance, reliability, and scalability. Ceph maximizes the separation between data and metadata management by replacing allocation tables with a pseudo-random data distribution function (CRUSH) designed for heterogeneous and dynamic clusters of unreliable object storage devices (OSDs). We leverage device intelligence by distributing data replication, failure detection and recovery to semi-autonomous OSDs running a specialized local object file system. A dynamic distributed metadata cluster provides extremely efficient metadata management and seamlessly adapts to a wide range of general purpose and scientific computing file system workloads. Performance measurements under a variety of workloads show that Ceph has excellent I/O performance and scalable metadata management, supporting more than 250,000 metadata operations per second.

1,621 citations

Journal ArticleDOI
TL;DR: Observations of a prototype implementation are presented, changes in the areas of cache validation, server process structure, name translation, and low-level storage representation are motivated, and Andrews ability to scale gracefully is quantitatively demonstrated.
Abstract: The Andrew File System is a location-transparent distributed tile system that will eventually span more than 5000 workstations at Carnegie Mellon University. Large scale affects performance and complicates system operation. In this paper we present observations of a prototype implementation, motivate changes in the areas of cache validation, server process structure, name translation, and low-level storage representation, and quantitatively demonstrate Andrews ability to scale gracefully. We establish the importance of whole-file transfer and caching in Andrew by comparing its performance with that of Sun Microsystems NFS tile system. We also show how the aggregation of files into volumes improves the operability of the system.

1,604 citations

Journal ArticleDOI
09 Dec 2002
TL;DR: The design of Farsite is reported on and the lessons learned by implementing much of that design are reported, including how to locally caching file data, lazily propagating file updates, and varying the duration and granularity of content leases.
Abstract: Farsite is a secure, scalable file system that logically functions as a centralized file server but is physically distributed among a set of untrusted computers. Farsite provides file availability and reliability through randomized replicated storage; it ensures the secrecy of file contents with cryptographic techniques; it maintains the integrity of file and directory data with a Byzantine-fault-tolerant protocol; it is designed to be scalable by using a distributed hint mechanism and delegation certificates for pathname translations; and it achieves good performance by locally caching file data, lazily propagating file updates, and varying the duration and granularity of content leases. We report on the design of Farsite and the lessons we have learned by implementing much of that design.

1,037 citations


Network Information
Related Topics (5)
Cloud computing
156.4K papers, 1.9M citations
80% related
Software
130.5K papers, 2M citations
78% related
Deep learning
79.8K papers, 2.1M citations
78% related
Network packet
159.7K papers, 2.2M citations
77% related
Wireless
133.4K papers, 1.9M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202345
202298
202164
2020127
2019215
2018256