scispace - formally typeset
Search or ask a question
Topic

Distributed object

About: Distributed object is a research topic. Over the lifetime, 4879 publications have been published within this topic receiving 97332 citations.


Papers
More filters
Book
02 Apr 2007
TL;DR: JADE (Java Agent Development Framework) is a software framework to make easy the development of multi-agent applications in compliance with the FIPA specifications and can be considered a middle-ware that implements an efficient agent platform and supports theDevelopment of multi agent systems.
Abstract: JADE (Java Agent Development Framework) is a software framework to make easy the development of multi-agent applications in compliance with the FIPA specifications. JADE can then be considered a middle-ware that implements an efficient agent platform and supports the development of multi agent systems. JADE agent platform tries to keep high the performance of a distributed agent system implemented with the Java language. In particular, its communication architecture tries to offer flexible and efficient messaging, transparently choosing the best transport available and leveraging state-of-the-art distributed object technology embedded within Java runtime environment. JADE uses an agent model and Java implementation that allow good runtime efficiency, software reuse, agent mobility and the realization of different agent architectures.

2,353 citations

Journal ArticleDOI
TL;DR: This survey proposes a framework for analyzing peer-to-peer content distribution technologies and focuses on nonfunctional characteristics such as security, scalability, performance, fairness, and resource management potential, and examines the way in which these characteristics are reflected in and affected by the architectural design decisions adopted by current peer- to-peer systems.
Abstract: Distributed computer architectures labeled "peer-to-peer" are designed for the sharing of computer resources (content, storage, CPU cycles) by direct exchange, rather than requiring the intermediation or support of a centralized server or authority. Peer-to-peer architectures are characterized by their ability to adapt to failures and accommodate transient populations of nodes while maintaining acceptable connectivity and performance.Content distribution is an important peer-to-peer application on the Internet that has received considerable research attention. Content distribution applications typically allow personal computers to function in a coordinated manner as a distributed storage medium by contributing, searching, and obtaining digital content.In this survey, we propose a framework for analyzing peer-to-peer content distribution technologies. Our approach focuses on nonfunctional characteristics such as security, scalability, performance, fairness, and resource management potential, and examines the way in which these characteristics are reflected in---and affected by---the architectural design decisions adopted by current peer-to-peer systems.We study current peer-to-peer systems and infrastructure technologies in terms of their distributed object location and routing mechanisms, their approach to content replication, caching and migration, their support for encryption, access control, authentication and identity, anonymity, deniability, accountability and reputation, and their use of resource trading and management schemes.

1,563 citations

Patent
27 Sep 2002
TL;DR: In this article, the authors present a system to support web-based applications, which consists of a set of server-side objects managed by an object manager (OM), the set of web-server objects including a global session object providing access to a repository, a server-server business object, and server side business components contained in the business object.
Abstract: According to one aspect of the present invention, a system is provided to support a web-based application. The system comprising a set of server-side objects managed by an object manager (OM), the set of server-side objects including a global session object providing access to a repository, a server-side business object, and server-side business components contained in the server-side business object. The system further comprises a set of browser-side objects running on a browser, the set of browser-side objects including a browser-side application object that exists throughout a user-session to manage other browser-side objects. The system also comprises a remote procedure call (RPC) mechanism and a notification mechanism to facilitate communication and synchronization between the browser-side objects and the server-side objects.

1,169 citations

Journal ArticleDOI
TL;DR: The paper presents the “textbook” architecture for distributed query processing and a series of techniques that are particularly useful for distributed database systems, and discusses different kinds of distributed systems such as client-server, middleware (multitier), and heterogeneous database systems and shows how query processing works in these systems.
Abstract: Distributed data processing is becoming a reality. Businesses want to do it for many reasons, and they often must do it in order to stay competitive. While much of the infrastructure for distributed data processing is already there (e.g., modern network technology), a number of issues make distributed data processing still a complex undertaking: (1) distributed systems can become very large, involving thousands of heterogeneous sites including PCs and mainframe server machines; (2) the state of a distributed system changes rapidly because the load of sites varies over time and new sites are added to the system; (3) legacy systems need to be integrated—such legacy systems usually have not been designed for distributed data processing and now need to interact with other (modern) systems in a distributed environment. This paper presents the state of the art of query processing for distributed database and information systems. The paper presents the “textbook” architecture for distributed query processing and a series of techniques that are particularly useful for distributed database systems. These techniques include special join techniques, techniques to exploit intraquery paralleli sm, techniques to reduce communication costs, and techniques to exploit caching and replication of data. Furthermore, the paper discusses different kinds of distributed systems such as client-server, middleware (multitier), and heterogeneous database systems, and shows how query processing works in these systems.

980 citations

Proceedings ArticleDOI
01 Jun 1997
TL;DR: A simple randomized algorithm for accessing shared objects that tends to satisfy each access request with a nearby copy is designed, based on a novel mechanism to maintain and distribute information about object locations, and requires only a small amount of additional memory at each node.
Abstract: Consider a set of shared objects in a distributed network, where several copies of each object may exist at any given time. To ensure both fast access to the objects as well as efficient utilization of network resources, it is desirable that each access request be satisfied by a copy "close" to the requesting node. Unfortunately, it is not clear how to efficiently achieve this goal in a dynamic, distributed environment in which large numbers of objects are continuously being created, replicated, and destroyed. In this paper, we design a simple randomized algorithm for accessing shared objects that tends to satisfy each access request with a nearby copy. The algorithm is based on a novel mechanism to maintain and distribute information about object locations, and requires only a small amount of additional memory at each node. We analyze our access scheme for a class of cost functions that captures the hierarchical nature of wide-area networks. We show that under the particular cost model considered: (i) the expected cost of an individual access is asymptotically optimal, and (ii) if objects are sufficiently large, the memory used for objects dominates the additional memory used by our algorithm with high probability. We also address dynamic changes in both the network as well as the set of object copies.

792 citations


Network Information
Related Topics (5)
Server
79.5K papers, 1.4M citations
86% related
Web service
57.6K papers, 989K citations
85% related
Software development
73.8K papers, 1.4M citations
84% related
Object (computer science)
106K papers, 1.3M citations
84% related
Mobile computing
51.3K papers, 1M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232
20225
202121
202039
201949
201841