scispace - formally typeset
Search or ask a question
Topic

Division (mathematics)

About: Division (mathematics) is a research topic. Over the lifetime, 12717 publications have been published within this topic receiving 87814 citations.


Papers
More filters
Patent
09 Feb 2005
TL;DR: The reconfigurable circuit of the present invention in which time division multiple processing is possible has a pipeline structure with the number of stages of an integral multiple of a given number, and comprises a plurality of processor elements having a processing unit whose configuration is variable according to first configuration data to be supplied as mentioned in this paper.
Abstract: The reconfigurable circuit of the present invention in which time division multiple processing is possible has a pipeline structure with the number of stages of an integral multiple of a given number, and comprises a plurality of processor elements having a processing unit whose configuration is variable according to first configuration data to be supplied, a network in which all inputs and outputs of a plurality of said processor elements are connected and which transfers data by one clock between the input and output according to second configuration data to be supplied, and a switching unit which cyclically switches by one clock and supplies the first and second configuration data prepared for the given number of tasks to each of the processing units.

30 citations

Journal ArticleDOI
Feza Gürsey1
TL;DR: In this article, it was shown that classical superstring actions can be written in the same dimensions in terms of the supergroup elements as the superstring elements and possible applications are discussed.
Abstract: The Super Poincare Groups in d = 3, 4, 6 and 10 are represented by graded matrices over the four division algebras. It is shown that classical superstring actions can be written in the same dimensions in terms of the supergroup elements. Possible applications are discussed.

29 citations

Journal ArticleDOI
TL;DR: A simple yet effective scheme using an azimuth-scaling spiral transformation that can accomplish both OAM multiplication and division by arbitrary rational factors in a single stage is proposed and experimentally demonstrated.
Abstract: Multiplication and division of the orbital angular momentum (OAM) of light are important functions in the exploitation of the OAM mode space for such purposes as high-dimensional quantum information encoding and mode division multiplexed optical communications. These operations are possible with optical transformations that reshape optical wave fronts according to azimuthal scaling. However, schemes proposed thus far have been limited to OAM multiplication by integer factors and require complex beam-copying or multitransformation diffraction stages; a result of the limited phase excursion 2πl around the annulus of an OAM state exp(ilθ). Based on the key idea that the phase excursion along spirals in the transverse plane of a vortex is theoretically unlimited, we propose and experimentally demonstrate a simple yet effective scheme using an azimuth-scaling spiral transformation that can accomplish both OAM multiplication and division by arbitrary rational factors in a single stage.

29 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
81% related
Fuzzy logic
151.2K papers, 2.3M citations
81% related
Artificial neural network
207K papers, 4.5M citations
81% related
Nonlinear system
208.1K papers, 4M citations
81% related
Matrix (mathematics)
105.5K papers, 1.9M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
2023739
20221,583
2021239
2020416
2019465