scispace - formally typeset
Search or ask a question
Topic

DNA microarray

About: DNA microarray is a research topic. Over the lifetime, 9281 publications have been published within this topic receiving 560554 citations. The topic is also known as: microarray & Oligonucleotide Array Sequence Analysis.


Papers
More filters
Journal ArticleDOI
TL;DR: A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is described that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression, finding in the budding yeast Saccharomyces cerevisiae that clustering gene expression data groups together efficiently genes of known similar function.
Abstract: A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is de- scribed that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression. The output is displayed graphically, conveying the clustering and the underlying expression data simultaneously in a form intuitive for biologists. We have found in the budding yeast Saccharomyces cerevisiae that clustering gene expression data groups together efficiently genes of known similar function, and we find a similar tendency in human data. Thus patterns seen in genome-wide expression experiments can be inter- preted as indications of the status of cellular processes. Also, coexpression of genes of known function with poorly charac- terized or novel genes may provide a simple means of gaining leads to the functions of many genes for which information is not available currently.

16,371 citations

Journal ArticleDOI
TL;DR: Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3′ untranscribed regions, as well as new candidate microRNA precursors.
Abstract: We have mapped and quantified mouse transcriptomes by deeply sequencing them and recording how frequently each gene is represented in the sequence sample (RNA-Seq). This provides a digital measure of the presence and prevalence of transcripts from known and previously unknown genes. We report reference measurements composed of 41–52 million mapped 25-base-pair reads for poly(A)-selected RNA from adult mouse brain, liver and skeletal muscle tissues. We used RNA standards to quantify transcript prevalence and to test the linear range of transcript detection, which spanned five orders of magnitude. Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3′ untranscribed regions, as well as new candidate microRNA precursors. RNA splice events, which are not readily measured by standard gene expression microarray or serial analysis of gene expression methods, were detected directly by mapping splice-crossing sequence reads. We observed 1.45 × 10 5 distinct splices, and alternative splices were prominent, with 3,500 different genes expressing one or more alternate internal splices. The mRNA population specifies a cell’s identity and helps to govern its present and future activities. This has made transcriptome analysis a general phenotyping method, with expression microarrays of many kinds in routine use. Here we explore the possibility that transcriptome analysis, transcript discovery and transcript refinement can be done effectively in large and complex mammalian genomes by ultra-high-throughput sequencing. Expression microarrays are currently the most widely used methodology for transcriptome analysis, although some limitations persist. These include hybridization and cross-hybridization artifacts 1–3 , dye-based detection issues and design constraints that preclude or seriously limit the detection of RNA splice patterns and previously unmapped genes. These issues have made it difficult for standard array designs to provide full sequence comprehensiveness (coverage of all possible genes, including unknown ones, in large genomes) or transcriptome comprehensiveness (reliable detection of all RNAs of all prevalence classes, including the least abundant ones that are physiologically relevant). Other

12,293 citations

Journal ArticleDOI
TL;DR: A method that assigns a score to each gene on the basis of change in gene expression relative to the standard deviation of repeated measurements is described, suggesting that this repair pathway for UV-damaged DNA might play a previously unrecognized role in repairing DNA damaged by ionizing radiation.
Abstract: Microarrays can measure the expression of thousands of genes to identify changes in expression between different biological states. Methods are needed to determine the significance of these changes while accounting for the enormous number of genes. We describe a method, Significance Analysis of Microarrays (SAM), that assigns a score to each gene on the basis of change in gene expression relative to the standard deviation of repeated measurements. For genes with scores greater than an adjustable threshold, SAM uses permutations of the repeated measurements to estimate the percentage of genes identified by chance, the false discovery rate (FDR). When the transcriptional response of human cells to ionizing radiation was measured by microarrays, SAM identified 34 genes that changed at least 1.5-fold with an estimated FDR of 12%, compared with FDRs of 60 and 84% by using conventional methods of analysis. Of the 34 genes, 19 were involved in cell cycle regulation and 3 in apoptosis. Surprisingly, four nucleotide excision repair genes were induced, suggesting that this repair pathway for UV-damaged DNA might play a previously unrecognized role in repairing DNA damaged by ionizing radiation.

12,102 citations

Journal ArticleDOI
20 Oct 1995-Science
TL;DR: A high-capacity system was developed to monitor the expression of many genes in parallel by means of simultaneous, two-color fluorescence hybridization, which enabled detection of rare transcripts in probe mixtures derived from 2 micrograms of total cellular messenger RNA.
Abstract: A high-capacity system was developed to monitor the expression of many genes in parallel. Microarrays prepared by high-speed robotic printing of complementary DNAs on glass were used for quantitative expression measurements of the corresponding genes. Because of the small format and high density of the arrays, hybridization volumes of 2 microliters could be used that enabled detection of rare transcripts in probe mixtures derived from 2 micrograms of total cellular messenger RNA. Differential expression measurements of 45 Arabidopsis genes were made by means of simultaneous, two-color fluorescence hybridization.

10,287 citations

Journal ArticleDOI
TL;DR: An analytical strategy is introduced, Gene Set Enrichment Analysis, designed to detect modest but coordinate changes in the expression of groups of functionally related genes, which identifies a set of genes involved in oxidative phosphorylation whose expression is coordinately decreased in human diabetic muscle.
Abstract: DNA microarrays can be used to identify gene expression changes characteristic of human disease. This is challenging, however, when relevant differences are subtle at the level of individual genes. We introduce an analytical strategy, Gene Set Enrichment Analysis, designed to detect modest but coordinate changes in the expression of groups of functionally related genes. Using this approach, we identify a set of genes involved in oxidative phosphorylation whose expression is coordinately decreased in human diabetic muscle. Expression of these genes is high at sites of insulin-mediated glucose disposal, activated by PGC-1α and correlated with total-body aerobic capacity. Our results associate this gene set with clinically important variation in human metabolism and illustrate the value of pathway relationships in the analysis of genomic profiling experiments.

7,997 citations


Network Information
Related Topics (5)
Genome
74.2K papers, 3.8M citations
91% related
Gene
211.7K papers, 10.3M citations
90% related
Gene expression
113.3K papers, 5.5M citations
89% related
Regulation of gene expression
85.4K papers, 5.8M citations
88% related
Transcription factor
82.8K papers, 5.4M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023163
2022288
202188
2020105
2019139
2018158