scispace - formally typeset
Search or ask a question

Showing papers on "Docking (molecular) published in 2005"


Journal ArticleDOI
TL;DR: The current study reveals the molecular environment of the odorant-binding site, and it further advances the understanding of GPCR pharmacology.
Abstract: The olfactory receptor (OR) superfamily provides a basis for the remarkable ability to recognize and discriminate a large number of odorants. In mice, the superfamily includes ∼1000 members, and they recognize overlapping sets of odorants with distinct affinities and specificities. To address the molecular basis of odor discrimination by the mammalian OR superfamily, we performed functional analysis on a series of site-directed mutants and performed ligand docking simulation studies to define the odorant-binding site of a mouse OR. Our results indicate that several amino acids in the transmembrane domains formed a ligand-binding pocket. Although other G-protein-coupled receptors (GPCRs) recognize biogenic ligands mainly with ionic or hydrogen bonding interactions, ORs recognize odorants mostly via hydrophobic and van der Waals interactions. This accounts for the broad but selective binding by ORs as well as their relatively low ligand-binding affinities. Furthermore, we succeeded in rational receptor design, inserting point mutations in the odorant-binding site that resulted in predicted changes in ligand specificity and antagonist activity. This ability to rationally design the receptor validated the binding site structure that was deduced with our mutational and ligand docking studies. Such broad and specific sensitivity suggests an evolutionary process during which mutations in the active site led to an enormous number of ORs with a wide range of ligand specificity. The current study reveals the molecular environment of the odorant-binding site, and it further advances the understanding of GPCR pharmacology.

292 citations


Journal ArticleDOI
TL;DR: It is shown that only very few modes in the low-frequency range are necessary and sufficient to describe loop flexibility in cAMP-dependent protein kinase and introduced a measure of relevance of normal modes on a given region of interest.
Abstract: Inspired by the current representation of the ligand-receptor binding process, a normal-mode-based methodology is presented to incorporate receptor flexibility in ligand docking and virtual screening. However, the systematic representation of the deformation space grows geometrically with the number of modes, and furthermore, midscale loop rearrangements like those found in protein kinase binding pockets cannot be accounted for with the first lowest-frequency modes. We thus introduced a measure of relevance of normal modes on a given region of interest and showed that only very few modes in the low-frequency range are necessary and sufficient to describe loop flexibility in cAMP-dependent protein kinase. We used this approach to generate an ensemble of representative receptor backbone conformations by perturbing the structure along a combination of relevant modes. Each ensemble conformation is complexed with known non-native binders to optimize the position of the binding-pocket side chains through a full flexible docking procedure. The multiple receptor conformations thus obtained are used in a small-scale virtual screening using receptor ensemble docking. We evaluated this algorithm on holo and apo structures of cAMP-dependent protein kinase that exhibit backbone rearrangements on two independent loop regions close to the binding pocket. Docking accuracy is improved, since the ligands considered in the virtual screening docked within 1.5 A to at least one of the structures. The discrimination between binders and nonbinders is also enhanced, as shown by the improvement of the enrichment factor. This constitutes a new step toward the systematic integration of flexible ligand-flexible receptor docking tools in structure-based drug discovery.

288 citations


Journal ArticleDOI
TL;DR: Using the recently determined X-ray structure of the tubulin:colchicinoid complex as the template, docking studies were employed to determine the binding modes of a set of structurally diverse colchicine site inhibitors and this work constructed a comprehensive, structure-based pharmacophore that in combination with molecular dynamics simulations confirms and extends the understanding of binding interactions at the colchichine site.
Abstract: Modulating the structure and function of tubulin and microtubules is an important route to anticancer therapeutics, and therefore, small molecules that bind to tubulin and cause mitotic arrest are of immense interest. A large number of synthetic and natural compounds with diverse structures have been shown to bind at the colchicine site, one of the major binding sites on tubulin, and inhibit tubulin assembly. Using the recently determined X-ray structure of the tubulin:colchicinoid complex as the template, we employed docking studies to determine the binding modes of a set of structurally diverse colchicine site inhibitors. These binding models were subsequently used to construct a comprehensive, structure-based pharmacophore that in combination with molecular dynamics simulations confirms and extends our understanding of binding interactions at the colchicine site.

281 citations


Journal ArticleDOI
TL;DR: The recently developed metadynamics method mimics the real dynamics of a ligand exiting or entering an enzyme and in so doing reconstructs the free energy surface, including all the relevant minima and the barriers between them.
Abstract: We apply our recently developed metadynamics method to the docking of ligands on flexible receptors in water solution. This method mimics the real dynamics of a ligand exiting or entering an enzyme and in so doing reconstructs the free energy surface. We apply it to four docking cases: β-trypsin/benzamidine, β-trypsin/chlorobenzamidine, immunoglobulin McPC-603/phosphocholine, and cyclin-dependent kinase 2/staurosporine. In every case studied, the method is able to predict the docked geometry and the free energy of docking. Its added value with respect to many other available methods is that it reconstructs the complete free energy surface, including all the relevant minima and the barriers between them.

272 citations


Journal ArticleDOI
TL;DR: Using small angle X-ray scattering, the overall shape of the regulatory subunits and corresponding holoenzymes have been elucidated and reveal striking and surprising isoform differences.

244 citations


Journal ArticleDOI
TL;DR: A novel Monte Carlo (MC) algorithm for drug–DNA docking that accounts for the molecular flexibility of both constituents and samples the docking geometry without any prior binding-site selection is proposed and the binding of the antimalarial drug methylene blue at the DNA minor groove is obtained in MC simulations in accordance with experimental data.
Abstract: The dynamics of biological processes depend on the structure and flexibility of the interacting molecules. In particular, the conformational diversity of DNA allows for large deformations upon binding. Drug-DNA interactions are of high pharmaceutical interest since the mode of action of anticancer, antiviral, antibacterial and other drugs is directly associated with their binding to DNA. A reliable prediction of drug-DNA binding at the atomic level by molecular docking methods provides the basis for the design of new drug compounds. Here, we propose a novel Monte Carlo (MC) algorithm for drug-DNA docking that accounts for the molecular flexibility of both constituents and samples the docking geometry without any prior binding-site selection. The binding of the antimalarial drug methylene blue at the DNA minor groove with a preference of binding to AT-rich over GC-rich base sequences is obtained in MC simulations in accordance with experimental data. In addition, the transition between two drug-DNA-binding modes, intercalation and minor-groove binding, has been achieved in dependence on the DNA base sequence. The reliable ab initio prediction of drug-DNA binding achieved by our new MC docking algorithm is an important step towards a realistic description of the structure and dynamics of molecular recognition in biological systems.

240 citations


Journal ArticleDOI
TL;DR: Molecular dynamic simulations of these HDAC-inhibitor complexes indicate that the interaction between the protein surface and inhibitor is playing an important role; also some active site residues show some flexibility, which is usually not included in routine docking protocols.
Abstract: Histone deacetylases (HDACs) play an important role in gene transcription. Inhibitors of HDACs induce cell differentiation and suppress cell proliferation in tumor cells. Although many HDAC inhibitors have been designed and synthesized, selective inhibition for class I HDAC isoforms is a goal that has yet to be achieved. To understand the difference between class I HDAC isoforms that could be exploited for the design of isoform-specific HDAC inhibitors, we have built three-dimensional models of four class I histone deacetylases, HDAC1, HDAC2, HDAC3, and HDAC8. Comparison of the homology model of HDAC8 with the recently published X-ray structure shows excellent agreement and validates the approach. A series of HDAC inhibitors were docked to the homology models to understand the similarities and differences between the binding modes. Molecular dynamic simulations of these HDAC-inhibitor complexes indicate that the interaction between the protein surface and inhibitor is playing an important role; also some active site residues show some flexibility, which is usually not included in routine docking protocols. The implications of these results for the design of isoform-selective HDAC inhibitors are discussed.

206 citations


Journal ArticleDOI
TL;DR: For a given docking method, hit rates were improved versus what would be expected for random selection for most protein targets, but the ability to prioritize known ligands on the basis of docking poses that resemble known crystal structures is both method- and target-dependent.
Abstract: The performance of several commercially available docking programs is compared in the context of virtual screening. Five different protein targets are used, each with several known ligands. The simulated screening deck comprised 1000 molecules from a cleansed version of the MDL drug data report and 49 known ligands. For many of the known ligands, crystal structures of the relevant protein-ligand complexes were available. We attempted to run experiments with each docking method that were as similar as possible. For a given docking method, hit rates were improved versus what would be expected for random selection for most protein targets. However, the ability to prioritize known ligands on the basis of docking poses that resemble known crystal structures is both method- and target-dependent.

206 citations


Journal ArticleDOI
TL;DR: Very large sets of X-ray structures of cyclin dependent kinase 2 (CDK2) and heat shock protein 90 (HSP90) are made use to assess the performance of flexible receptor docking in binding-mode prediction and virtual screening experiments and pitfalls inherent to flexible receptors docking have been identified and guidelines are presented to avoid them.
Abstract: One of the current challenges in docking studies is the inclusion of receptor flexibility. This is crucial because the binding sites of many therapeutic targets sample a wide range of conformational states, which has major consequences on molecular recognition. In this paper, we make use of very large sets of X-ray structures of cyclin dependent kinase 2 (CDK2) and heat shock protein 90 (HSP90) to assess the performance of flexible receptor docking in binding-mode prediction and virtual screening experiments. Flexible receptor docking performs much better than rigid receptor docking in the former application. Regarding the latter, we observe a significant improvement in the prediction of binding affinities, but owing to an increase in the number of false positives, this is not translated into better hit rates. A simple scoring scheme to correct this limitation is presented. More importantly, pitfalls inherent to flexible receptor docking have been identified and guidelines are presented to avoid them.

195 citations


Journal ArticleDOI
TL;DR: A general method for the mimicry of one face of analpha-helix based on a terphenyl scaffold that spatially projects functionality in a manner similar to that of two turns of an alpha- Helix is described.
Abstract: We describe a general method for the mimicry of one face of an alpha-helix based on a terphenyl scaffold that spatially projects functionality in a manner similar to that of two turns of an alpha-helix. The synthetic scaffold reduces the flexibility and molecular weight of the mimicked protein secondary structure. We have applied this design to the development of antagonists of the alpha-helix binding protein Bcl-x(L). Using a sequential synthetic strategy, we have prepared a library of terphenyl derivatives to mimic the helical region of the Bak BH3 domain that binds Bcl-x(L). Fluorescence polarization assays were carried out to evaluate the ability of terphenyl derivatives to displace the Bcl-x(L)-bound Bak peptide. Terphenyl 14 exhibited good in vitro affinity with a K(i) value of 0.114 muM. These terphenyl derivatives were more selective at disrupting the Bcl-x(L)/Bak over the HDM2/p53 interaction, which involves binding of the N-terminal alpha-helix of p53 to HDM2. Structural studies using NMR spectroscopy and computer-aided docking simulations suggested that the helix binding area on the surface of Bcl-x(L) is the target for the synthetic ligands. Treatment of human embryonic kidney 293 (HEK293) cells with terphenyl derivatives resulted in the disruption of the binding of Bcl-x(L) to Bax in intact cells.

189 citations


Journal ArticleDOI
TL;DR: This study uses semiempirical quantum mechanics to design a scoring function that can calculate the electrostatic interactions and solvation free energy expected during complexation and shows the predictive power and ability of this scoring function within protein targets and its ability to score ligand poses docked to a protein target.
Abstract: Computational methods to calculate binding affinity in protein−ligand interaction are of immense interest because of obvious practical applications in structure-based drug design. Scoring functions attempt to calculate the variation in binding affinity of ligands−inhibitors bound to protein targets at various levels of theory. In this study we use semiempirical quantum mechanics to design a scoring function that can calculate the electrostatic interactions and solvation free energy expected during complexation. This physically based approach has the ability to capture binding affinity trends in a diverse range of protein−ligand complexes. We also show the predictive power of this scoring function within protein targets and its ability to score ligand poses docked to a protein target. We also demonstrate the ability of this scoring function to discriminate between native and decoy poses and highlight the crucial role played by electrostatic interactions in molecular recognition. Finally we compare the perf...

Journal ArticleDOI
TL;DR: This review is focused on recent advances and new aspects in the field of molecular docking and scoring, and it covers multiple applications and case studies to give an overview of the state-of-the-art methods and a survey of innovative approaches.
Abstract: This review is focused on recent advances and new aspects in the field of molecular docking and scoring, and it covers multiple applications and case studies. Basic requirements and different algorithms for docking are briefly discussed. Moreover, parameters that influence docking results, combination of different docking algorithms and scoring functions, performance of scoring functions, docking using homology models, and ligand and protein flexibility are examined to give an overview of the state-of-the-art methods and a survey of innovative approaches in molecular docking and scoring. Regarding the enormous amount of literature in this field we restrict ourselves on an overview of several important advances in docking and scoring techniques published within the last two years, i.e. we considered publications ranging from 2002 to 2004.

Journal ArticleDOI
TL;DR: The results suggest that docking into GPCR homology models can be a useful approach for lead finding by virtual screening when either little or no information about the active ligands is available.
Abstract: In this paper, we compare protein- and ligand-based virtual screening techniques for identifying the ligands of four biogenic amine-binding G-protein coupled receptors (GPCRs). For the screening of the virtual compound libraries, we used (1) molecular docking into GPCR homology models, (2) ligand-based pharmacophore and Feature Tree models, (3) three-dimensional (3D)-similarity searches, and (4) statistical methods [partial least squares (PLS) and partial least squares discriminant analysis (PLS-DA) models] based on two-dimensional (2D) molecular descriptors. The comparison of the different methods in retrieving known antagonists from virtual libraries shows that in our study the ligand-based pharmacophore-, Feature Tree-, and 2D quantitative structure-activity relationship (QSAR)-based screening techniques provide enrichment factors that are higher than those provided by molecular docking into the GPCR homology models. Nevertheless, the hit rates achieved when docking with GOLD and ranking the ligands with GoldScore (up to 60% among the top-ranked 1% of the screened databases) are still satisfying. These results suggest that docking into GPCR homology models can be a useful approach for lead finding by virtual screening when either little or no information about the active ligands is available.

Journal ArticleDOI
TL;DR: The role of docking interactions in determining connectivity of the yeast MAPKs Fus3 and Kss1 is examined and it is found that docking interactions are necessary for communication with the kinases and that they can encode subtle differences in pathway-specific input and output.

Journal ArticleDOI
TL;DR: The results obtained suggest that the underlying philosophy combines flexible docking and 6D-QSAR is suitable for the identification of an endocrine-disrupting potential associated with drugs and chemicals.
Abstract: We present a concept for the in silico simulation of adverse effects triggered by drugs and chemicals. The underlying philosophy combines flexible docking (software Yeti) for the identification of the binding mode(s) and 6D-QSAR (software Quasar) for their quantification. The results obtained for 106 diverse molecules binding to the estrogen receptor (q2 = 0.903; p2 = 0.885) suggest that our approach is suitable for the identification of an endocrine-disrupting potential associated with drugs and chemicals.

Journal ArticleDOI
TL;DR: Docking experiments in silico showed that sweet proteins can bind to a secondary site without entering the deep cleft, and can help to design new sweeteners.
Abstract: The sweet taste receptor, a heterodimeric G protein coupled receptor (GPCR) protein, formed by the T1R2 and T1R3 subunits, recognizes several sweet compounds including carbohydrates, amino acids, peptides, proteins, and synthetic sweeteners. Its similarity with the metabotropic glutamate mGluR1 receptor allowed us to build homology models. All possible dimers formed by combinations of the human T1R2 and T1R3 subunits, modeled on the A (closed) or B (open) chains of the extracellular ligand binding domain of the mGluR1 template, yield four ligand binding sites for low-molecular-weight sweeteners. These sites were probed by docking a set of molecules representative of all classes of sweet compounds and calculating the free energy of ligand binding. These sites are not easily accessible to sweet proteins, but docking experiments in silico showed that sweet proteins can bind to a secondary site without entering the deep cleft. Our models account for many experimental observations on the tastes of sweeteners, including sweetness synergy, and can help to design new sweeteners.

Journal ArticleDOI
TL;DR: The 2-phenylnaphthalene scaffold was explored as a simplified version of genistein and found to be effective in two models of inflammation, suggesting that targeting ER may be therapeutically useful in treating certain chronic inflammatory diseases.
Abstract: The 2-phenylnaphthalene scaffold was explored as a simplified version of genistein in order to identify ER selective ligands. With the aid of docking studies, positions 1, 4, and 8 of the 2-phenylnaphthalene template were predicted to be the most potentially influential positions to enhance ER selectivity using two different binding orientations. Both orientations have the phenol moiety mimicking the A-ring of genistein. Several compounds predicted to adopt orientations similar to that of genistein when bound to ERbeta were observed to have slightly higher ER affinity and selectivity than genistein. The second orientation we exploited, which was different from that of genistein when bound to ERbeta, resulted in the discovery of several compounds that had superior ER selectivity and affinity versus genistein. X-ray structures of two ER selective compounds (i.e., 15 and 47) confirmed the alternate binding mode and suggested that substituents at positions 1 and 8 were responsible for inducing selectivity. One compound (i.e., 47, WAY-202196) was further examined and found to be effective in two models of inflammation, suggesting that targeting ER may be therapeutically useful in treating certain chronic inflammatory diseases.

Journal ArticleDOI
TL;DR: A hierarchical pre-organization of multiple conformations of small molecules removes the exploration of ligand conformational space from the docking calculation and allows for concise representation of what can be thousands of conformations.
Abstract: Ligand flexibility is an important problem in molecular docking and virtual screening. To address this challenge, we investigate a hierarchical pre-organization of multiple conformations of small molecules. Such organization of pre-calculated conformations removes the exploration of ligand conformational space from the docking calculation and allows for concise representation of what can be thousands of conformations. The hierarchy also recognizes and prunes incompatible conformations early in the calculation, eliminating redundant calculations of fit. We investigate the method by docking the MDL Drug Data Report (MDDR), an annotated database of 100,000 molecules, into apo and holo forms of seven unrelated targets. This annotated database allows us to track the ranking of tens to hundreds of annotated ligands in each of the docking systems. The binding sites and database are prepared in an automated fashion in an attempt to remove some human bias from the calculations. Many thousands of explicit and implicit ligand conformations may be docked in calculations not much longer than required for single conformer docking. As long as internal energies are not considered, recombination with the hierarchy is additive as the number of degrees of freedom is increased. Molecules with even millions of conformations can be docked in a few minutes on a single desktop computer.

Journal ArticleDOI
TL;DR: Docking studies demonstrated the likely localization of the σ complex in the GST active sites and provide a structural explanation for its strong stabilization.

Journal ArticleDOI
TL;DR: Results suggest that a simple, noncovalent scoring function may be used to identify inhibitors of at least some metalloenzymes.
Abstract: Molecular docking uses the three-dimensional structure of a receptor to screen databases of small molecules for potential ligands, often based on energetic complementarity. For many docking scoring functions, which calculate nonbonded interactions, metalloenzymes are challenging because of the partial covalent nature of metal−ligand interactions. To investigate how well molecular docking can identify potential ligands of metalloenzymes using a “standard” scoring function, we have docked the MDL Drug Data Report (MDDR), a functionally annotated database of 95 000 small molecules, against the X-ray crystal structures of five metalloenzymes. These enzymes included three zinc proteases, the nickel analogue of an iron enzyme, and a molybdenum metalloenzyme. The ability of the docking program to retrospectively enrich the annotated ligands as high-scoring hits for each enzyme and to calculate proper geometries was evaluated. In all five systems, the annotated ligands within the MDDR were enriched at least 20 ti...

Journal ArticleDOI
TL;DR: An analysis indicates that this hydrogen bond is expected to contribute a fraction of the 10-fold change in binding affinity, adding a valuable observation to the debate about the energetic role of hydrogen bonding in molecular recognition.
Abstract: We report the discovery, synthesis, and crystallographic binding mode of novel furanopyrimidine and pyrrolopyrimidine inhibitors of the Chk1 kinase, an oncology target. These inhibitors are synthetically tractable and inhibit Chk1 by competing for its ATP site. A chronological account allows an objective comparison of modeled compound docking modes to the subsequently obtained crystal structures. The comparison provides insights regarding the interpretation of modeling results, in relationship to the multiple reasonable docking modes which may be obtained in a kinase-ATP site. The crystal structures were used to guide medicinal chemistry efforts. This led to a thorough characterization of a pair of ligand−protein complexes which differ by a single hydrogen bond. An analysis indicates that this hydrogen bond is expected to contribute a fraction of the 10-fold change in binding affinity, adding a valuable observation to the debate about the energetic role of hydrogen bonding in molecular recognition.

Journal ArticleDOI
TL;DR: Taking advantage of recently identified ERK docking domains, which are reported to facilitate substrate protein interactions, computer-aided drug design (CADD) is used to identify novel small molecular weight ERK inhibitors.
Abstract: The extracellular signal regulated kinase (ERK1 and ERK2) signal transduction pathways play a critical role in cell proliferation. Hyperactivation of the ERK proteins either through increased expression of membrane-bound growth factor receptors or genetic mutations of upstream proteins is thought to be involved in the pathogenesis of many human cancers. Thus, targeted inhibition of ERK signaling is viewed as a potential approach to prevent cancer cell proliferation. Currently, no specific inhibitors of the ERK proteins exist. Moreover, most kinase inhibitors lack specificity because they target the ATP binding region, which is well conserved among the protein kinase families. Taking advantage of recently identified ERK docking domains, which are reported to facilitate substrate protein interactions, we have used computer-aided drug design (CADD) to identify novel small molecular weight ERK inhibitors. Following a CADD screen of over 800 000 molecules, 80 potential compounds were selected and tested for activity in biological assays. Several compounds inhibited ERK-specific phosphorylation of ribosomal S6 kinase-1 (Rsk-1) or the ternary complex factor Elk-1 (TCF/Elk-1), both of which are involved in promoting cell proliferation. Active compounds showed a dose-dependent reduction in the proliferation of several cancer cell lines as measured by colony survival assays. Direct binding between the active compounds and ERK2 was indicated by fluorescence quenching. These active compounds may serve as lead candidates for development of novel specific inhibitors of ERK-substrate interactions involved in cell proliferation.

Journal ArticleDOI
TL;DR: Both polar interactions near the intracellular opening of the selectivity filter as well as hydrophobic complementarity in the region around F656 are important for blocker binding, consistent with recent alanine scanning mutation experiments on the blocking of the hERG channel by other compounds.

Journal ArticleDOI
TL;DR: Consideration of both X-ray and predicted water molecules and the subsequent pooling and rescoring of all solutions (generated by all three docking programs) with the SCORE scoring function significantly improved the quality of prediction of the binding modes both in terms of RMSD and CSP accuracy.
Abstract: The popular docking programs AutoDock, FlexX, and GOLD were used to predict binding modes of ligands in crystallographic complexes including X-ray water molecules or computationally predicted water molecules. Isoenzymes of two different enzyme systems were used, namely cytochromes P450 (n = 19) and thymidine kinases (n = 19) and three different “water” scenarios: i.e., docking (i) into water-free active sites, (ii) into active sites containing crystallographic water molecules, and (iii) into active sites containing water molecules predicted by a novel approach based on the program GRID. Docking accuracies were determined in terms of the root-mean-square deviation (RMSD) accuracy and, newly defined, in terms of the ligand catalytic site prediction (CSP) accuracy. Consideration of both X-ray and predicted water molecules and the subsequent pooling and rescoring of all solutions (generated by all three docking programs) with the SCORE scoring function significantly improved the quality of prediction of the b...

Journal ArticleDOI
TL;DR: Downstream branches of ERK2 signaling can be selectively inhibited without blocking total pathway activity, and disrupting ERK-DEF domain interactions could be an alternative to inhibiting oncogenic Ras-MAPK signaling.

Journal ArticleDOI
TL;DR: The results suggest that o-hydroxyl and/or keto-enol structures are important for both IN and PR inhibitory actions.

Journal ArticleDOI
TL;DR: These decoys provide a tool for the development and improvement of molecular docking scoring functions and may be rapidly tested experimentally against these and related experimental systems, which are well-behaved in assays and for structure determination.
Abstract: Molecular docking is widely used to predict novel lead compounds for drug discovery. Success depends on the quality of the docking scoring function, among other factors. An imperfect scoring function can mislead by predicting incorrect ligand geometries or by selecting nonbinding molecules over true ligands. These false-positive hits may be considered "decoys". Although these decoys are frustrating, they potentially provide important tests for a docking algorithm; the more subtle the decoy, the more rigorous the test. Indeed, decoy databases have been used to improve protein structure prediction algorithms and protein-protein docking algorithms. Here, we describe 20 geometric decoys in five enzymes and 166 "hit list" decoys-i.e., molecules predicted to bind by our docking program that were tested and found not to do so-for beta-lactamase and two cavity sites in lysozyme. Especially in the cavity sites, which are very simple, these decoys highlight particular weaknesses in our scoring function. We also consider the performance of five other widely used docking scoring functions against our geometric and hit list decoys. Intriguingly, whereas many of these other scoring functions performed better on the geometric decoys, they typically performed worse on the hit list decoys, often highly ranking molecules that seemed to poorly complement the model sites. Several of these "hits"from the other scoring functions were tested experimentally and found, in fact, to be decoys. Collectively, these decoys provide a tool for the development and improvement of molecular docking scoring functions. Such improvements may, in turn, be rapidly tested experimentally against these and related experimental systems, which are well-behaved in assays and for structure determination.

Journal ArticleDOI
TL;DR: Test applications on protein-protein docking and on docking the inhibitor staurosporine to the apo-form of cAMP-dependent protein kinase A catalytic domain indicate significant improvement of docking results compared to rigid docking at a very modest computational demand.

Journal ArticleDOI
TL;DR: The 3D models of both CB1 and CB2 human receptors have been established by homology modeling using as template the X-ray structure of bovine Rhodopsin a G-protein-coupled receptor (GPCR) to model the receptor-ligand complexes.

Journal ArticleDOI
01 Mar 2005-Proteins
TL;DR: Re‐parameterization of metal‐acceptor interactions and lipophilicity of planar nitrogen atoms in the scoring functions resulted in a significant increase in the percentage of successful dockings against the heme binding proteins, which will be useful in docking applications on P450 enzymes and other hemebinding proteins.
Abstract: The cytochromes P450 (P450s) are a family of heme-containing monooxygenase enzymes involved in a variety of functions, including the metabolism of endogenous and exogenous substances in the human body. During lead optimization, and in drug development, many potential drug candidates are rejected because of the affinity they display for drug-metabolising P450s. Recently, crystal structures of human enzymes involved in drug metabolism have been determined, significantly augmenting the prospect of using structure-based design to modulate the binding and metabolizing properties of compounds against P450 proteins. An important step in the application of structure-based metabolic optimization is the accurate prediction of docking modes in heme binding proteins. In this paper we assess the performance of the docking program GOLD at predicting the binding mode of 45 heme-containing complexes. We achieved success rates of 64% and 57% for Chemscore and Goldscore respectively; these success rates are significantly lower than the value of 79% observed with both scoring functions for the full GOLD validation set. Re-parameterization of metal-acceptor interactions and lipophilicity of planar nitrogen atoms in the scoring functions resulted in a significant increase in the percentage of successful dockings against the heme binding proteins (Chemscore 73%, Goldscore 65%). The modified scoring functions will be useful in docking applications on P450 enzymes and other heme binding proteins.