scispace - formally typeset
Search or ask a question
Topic

Docosahexaenoic acid

About: Docosahexaenoic acid is a research topic. Over the lifetime, 14412 publications have been published within this topic receiving 620852 citations. The topic is also known as: all-cis-DHA & all-cis-docosa-4,7,10,13,16,19-hexaenoic acid.


Papers
More filters
Journal ArticleDOI
TL;DR: DHA and EPA can be beneficial in AD by enhancing removal of Aβ42, increasing neurotrophin production, decreasing pro-inflammatory cytokine production, and by inducing a shift in phenotype away from pro- inflammatory M1 activation.
Abstract: The use of supplements with omega-3 (ω3) fatty acids (FAs) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) is widespread due to proposed beneficial effects on the nervous and cardiovascular systems. Many effects of ω3 FAs are believed to be caused by down-regulation and resolution of inflammation. Alzheimer's disease (AD) is associated with inflammation mediated by microglia and astrocytes, and ω3 FAs have been proposed as potential treatments for AD. The focus of the present study is on the effects of DHA and EPA on microglial phagocytosis of the AD pathogen amyloid-β (Aβ), on secreted and cellular markers of immune activity, and on production of brain-derived neurotrophic factor (BDNF). Human CHME3 microglial cells were exposed to DHA or EPA, with or without the presence of Aβ42. Phagocytosis of Aβ42 was analyzed by flow cytometry in conjunction with immunocytochemistry using antibodies to cellular proteins. Secreted proteins were analyzed by ELISA. Both DHA and EPA were found to stimulate microglial phagocytosis of Aβ42. Phagocytosis of Aβ42 was performed by microglia with a predominance of M2 markers. EPA increased the levels of BDNF in the culture medium. The levels of TNF-α were decreased by DHA. Both DHA and EPA decreased the pro-inflammatory M1 markers CD40 and CD86, and DHA had a stimulatory effect on the anti-inflammatory M2 marker CD206. DHA and EPA can be beneficial in AD by enhancing removal of Aβ42, increasing neurotrophin production, decreasing pro-inflammatory cytokine production, and by inducing a shift in phenotype away from pro-inflammatory M1 activation.

193 citations

Journal ArticleDOI
TL;DR: In an effort to improve egg quality and larval viability, efforts should be directed towards establishing the best ratio of DHA/EPA/AA in formulated feeds such that requirements for neural function and visual performance are maximised and that production and efficacy of eicosanoids are adequate to permit physiological functions to operate efficiently.

193 citations

Journal ArticleDOI
TL;DR: Clinical trials with DHA-rich oil indicate comparable efficacies to fish oil for protection from cardiovascular risk factors by lowering plasma triglycerides and oxidative stress and possible protective mechanisms of EPA/DHA in major diseases such as coronary heart disease, atherosclerosis, cancer and type 2 diabetes.
Abstract: Long-chain EPA/DHA omega-3 fatty acid supplementation can be co-preventative and co-therapeutic. Current research suggests increasing accumulated long chain omega-3s for health benefits and as natural medicine in several major diseases. But many believe plant omega-3 sources are nutritionally and therapeutically equivalent to the EPA/DHA omega-3 in fish oil. Although healthy, precursor ALA bio-conversion to EPA is inefficient and production of DHA is nearly absent, limiting the protective value of ALA supplementation from flax-oil, for example. Along with pollutants certain fish acquire high levels of EPA/DHA as predatory species. However, the origin of EPA/DHA in aquatic ecosystems is algae. Certain microalgae produce high levels of EPA or DHA. Now, organically produced DHA-rich microalgae oil is available. Clinical trials with DHA-rich oil indicate comparable efficacies to fish oil for protection from cardiovascular risk factors by lowering plasma triglycerides and oxidative stress. This review discusses 1) omega-3 fatty acids in nutrition and medicine; 2) omega-3s in physiology and gene regulation; 3) possible protective mechanisms of EPA/DHA in major diseases such as coronary heart disease, atherosclerosis, cancer and type 2 diabetes; 4) EPA and DHA requirements considering fish oil safety; and 5) microalgae EPA and DHA-rich oils and recent clinical results.

193 citations

Journal ArticleDOI
TL;DR: The proportions of plasma long-chain n-3 fatty acids were not significantly affected by the duration of adherence to a vegetarian or vegan diet, which suggests that when animal foods are wholly excluded from the diet, the endogenous production of EPA and DHA results in low but stable plasma concentrations of these fatty acids.

193 citations

Journal ArticleDOI
TL;DR: Results indicate that Schizochytrium sp.
Abstract: The culture conditions for high-yield production of docosahexaenoic acid (DHA) by Schizochytrium sp. strain SR21 were investigated in a fermenter. With increasing carbon (glucose) and nitrogen (corn steep liquor and ammonium sulfate) sources (up to 12% glucose) in the medium, DHA productivity increased without a decrease in growth rate, i.e., 2.0, 2.7, and 3.3 g DHA/L/d with 6, 10, and 12% glucose, respectively. Eventually, 48.1 g dry cells/L and 13.3 g DHA/L were produced in 4 d with 12% glucose. DHA productivity was decreased with 15% glucose, i.e., 3.1 g/L/d. With 12% glucose, the lipid content was 77.5% of dry cells, and DHA content was 35.6% of total fatty acids. The lipid was composed of about 95% neutral lipid and 5% polar lipid. In polar lipids, the contents of phosphatidylcholine (PC), phosphatidylethanolamine, and phosphatidylinositol were 74, 11, and 5%, respectively. The PC profile was simple, 70% of PC molecules were 1-palmitoyl-2-DHA-PC and 1.2-di-DHA-PC. These results indicate that Schizochytrium sp. strain 21 is an excellent source for microbial DHA production, including not only the acid form of DHA but also 2-DHA-PC.

192 citations


Network Information
Related Topics (5)
Fatty acid
74.5K papers, 2.2M citations
89% related
Cholesterol
44.6K papers, 1.9M citations
85% related
Oxidative stress
86.5K papers, 3.8M citations
83% related
Adipose tissue
54.6K papers, 2.5M citations
80% related
Reactive oxygen species
36.6K papers, 2M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023473
2022935
2021575
2020612
2019621
2018541