scispace - formally typeset
Search or ask a question
Topic

Docosahexaenoic acid

About: Docosahexaenoic acid is a research topic. Over the lifetime, 14412 publications have been published within this topic receiving 620852 citations. The topic is also known as: all-cis-DHA & all-cis-docosa-4,7,10,13,16,19-hexaenoic acid.


Papers
More filters
Journal ArticleDOI
TL;DR: The outcome of this analysis will reveal that changes in hepatic 22:6,n-3 content has a major impact on hepatic lipid and carbohydrate metabolism, and the mechanisms involve 22: 6, n-3 control of several well-known signaling pathways, such as Akt, Erk1/2, Gsk3beta and PKC.

156 citations

Journal ArticleDOI
TL;DR: Consumption of EPA+DHA esterified to different carriers had different effects on the incorporation of these FAs in blood fractions and on the visual sustained attention performance in children.

156 citations

Journal ArticleDOI
TL;DR: There is evidence for a pro-atherosclerotic effect of 15- LOX including the direct contribution to LDL oxidation and to the recruitment of monocytes to the vessel wall, its role in angiotensin II mediated mechanisms and in vascular smooth muscle cell proliferation, and a broad line of evidence that 15-LOX metabolites of arachidonic and linoleic acid have anti-inflammatory effects.
Abstract: Chronic inflammation plays a major role in atherogenesis and understanding the role of inflammation and its resolution will offer novel approaches to interfere with atherogenesis. The 15(S)-lipoxygenase (15-LOX) plays a janus-role in inflammation with pro-inflammatory and anti-inflammatory effects in cell cultures and primary cells and even opposite effects on atherosclerosis in two different animal species. There is evidence for a pro-atherosclerotic effect of 15-LOX including the direct contribution to LDL oxidation and to the recruitment of monocytes to the vessel wall, its role in angiotensin II mediated mechanisms and in vascular smooth muscle cell proliferation. In contrast to the pro-atherosclerotic effects of 15-LOX, there is also a broad line of evidence that 15-LOX metabolites of arachidonic and linoleic acid have anti-inflammatory effects. The 15-LOX arachidonic acid metabolite 15-HETE inhibits superoxide production and polymorphonuclear neutrophil (PMN) migration across cytokine-activated endothelium and can be further metabolized to the anti-inflammatory lipoxins. These promote vasorelaxation in the aorta and counteract the action of most other pro-inflammatory factors like leukotrienes and prostanoids. Anti-atherogenic properties are also reported for the linoleic acid oxidation product 13-HODE through inhibition of adhesion of several blood cells to the endothelium. Furthermore, there is evidence that 15-LOX is involved in the metabolism of the long-chain omega-3 fatty acid docosahexaenoic acid (DHA) leading to a family of anti-inflammatory resolvins and protectins. From these cell culture and animal studies the role of the 15-LOX in human atherosclerosis cannot be predicted. However, recent genetic studies characterized the 15-LOX haplotypes in Caucasians and discovered a functional polymorphism in the human 15-LOX promoter. This will now allow large studies to investigate an association of 15-LOX with coronary artery disease and to answer the question whether 15-LOX is pro- or anti-atherogenic in humans.

156 citations

Journal ArticleDOI
TL;DR: This study showed that n-3 fatty acids in fish oil given as ethyl esters or triglycerides were equally well absorbed and Eicosapentaenoic and docosahexaenoic acids were also equally absorbed.

156 citations

Journal ArticleDOI
TL;DR: NDFDA has unusually high toxic potency for a perfluorinated hydrocarbon, and some of the toxic effects caused by this acid are remarkably similar to those seen with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).

156 citations


Network Information
Related Topics (5)
Fatty acid
74.5K papers, 2.2M citations
89% related
Cholesterol
44.6K papers, 1.9M citations
85% related
Oxidative stress
86.5K papers, 3.8M citations
83% related
Adipose tissue
54.6K papers, 2.5M citations
80% related
Reactive oxygen species
36.6K papers, 2M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023473
2022935
2021575
2020612
2019621
2018541