scispace - formally typeset
Search or ask a question
Topic

Docosahexaenoic acid

About: Docosahexaenoic acid is a research topic. Over the lifetime, 14412 publications have been published within this topic receiving 620852 citations. The topic is also known as: all-cis-DHA & all-cis-docosa-4,7,10,13,16,19-hexaenoic acid.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that fish and vegetable oil sources will not be adequate to meet future needs, but that algal oil and terrestrial plants modified genetically to produce EPA and DHA could provide for the increased world demand.
Abstract: Purpose of reviewTo delineate the available sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for human consumption and to determine if the available supply is capable of supplying the nutrient levels recommended by expert bodies.Recent findingsThere are converging opinions among

150 citations

Journal ArticleDOI
TL;DR: Fish consumption is associated with decreased heart rate in men, and because heart rate is positively associated with risk of sudden death, this association may explain, at least in part, the lower risk ofudden death among fish consumers.
Abstract: Background— Fish consumption decreases risk of sudden death. The goal of the present study was to assess the relationship between fish consumption and heart rate. Methods and Results— A cross-sectional analysis was conducted of 9758 men, age 50 to 59 years, without coronary heart disease (CHD) who were recruited in France and Belfast, Ireland, from 1991 to 1993. Heart rate and CHD risk factors were compared among 4 categories of fish consumption, as follows: (1) less than once per week (n=2662), (2) once per week (n=4576), (3) twice per week (n=1964), and (4) more than twice per week (n=556). Fatty acid profiles of erythrocyte phospholipids were determined in a random subsample of 407 subjects. In erythrocyte phospholipids, eicosapentaenoic acid (P<0.0005), docosahexaenoic acid (P<0.0001), and total n-3 fatty acid (P<0.0008) increased across the categories of fish intake. Triglycerides (P<0.0001), systolic blood pressure (P<0.006), and diastolic blood pressure (P<0.0001) were lower and HDL cholesterol lev...

150 citations

Journal ArticleDOI
TL;DR: Significant negative correlations between depleted n6 fatty acids and plasma levels of thiobarbituric acid reactive substances suggests that depletion is caused by increased breakdown of these fatty acids rather than by impaired incorporation of fatty acids into membranes.

150 citations

Journal ArticleDOI
TL;DR: It is demonstrated that n-3 PUFAs are highly effective in protecting the brain, and that the protective mechanisms involve Nrf2 activation and HO-1 upregulation by 4-HHE.
Abstract: Ischemic stroke is a debilitating clinical disorder that affects millions of people, yet lacks effective neuroprotective treatments. Fish oil is known to exert beneficial effects against cerebral ischemia. However, the underlying protective mechanisms are not fully understood. The present study tests the hypothesis that omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate ischemic neuronal injury by activating nuclear factor E2-related factor 2 (Nrf2) and upregulating heme oxygenase-1 (HO-1) in both in vitro and in vivo models. We observed that pretreatment of rat primary neurons with docosahexaenoic acid (DHA) significantly reduced neuronal death following oxygen-glucose deprivation. This protection was associated with increased Nrf2 activation and HO-1 upregulation. Inhibition of HO-1 activity with tin protoporphyrin IX attenuated the protective effects of DHA. Further studies showed that 4-hydroxy-2E-hexenal (4-HHE), an end-product of peroxidation of n-3 PUFAs, was a more potent Nrf2 inducer than 4-hydroxy-2E-nonenal derived from n-6 PUFAs. In an in vivo setting, transgenic mice overexpressing fatty acid metabolism-1, an enzyme that converts n-6 PUFAs to n-3 PUFAs, were remarkably resistant to focal cerebral ischemia compared with their wild-type littermates. Regular mice fed with a fish oil-enhanced diet also demonstrated significant resistance to ischemia compared with mice fed with a regular diet. As expected, the protection was associated with HO-1 upregulation, Nrf2 activation, and 4-HHE generation. Together, our data demonstrate that n-3 PUFAs are highly effective in protecting the brain, and that the protective mechanisms involve Nrf2 activation and HO-1 upregulation by 4-HHE. Further investigation of n-3 PUFA neuroprotective mechanisms may accelerate the development of stroke therapies.

150 citations

Journal ArticleDOI
TL;DR: Overall, this review suggests that each n-3 PUFA has promising anticancer effects and warrants further research.
Abstract: Breast cancer (BC) is the most common cancer among women worldwide. Dietary fatty acids, especially n-3 polyunsaturated fatty acids (PUFA), are believed to play a role in reducing BC risk. Evidence has shown that fish consumption or intake of long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial for inhibiting mammary carcinogenesis. The evidence regarding α-linolenic acid (ALA), however, remains equivocal. It is essential to clarify the relation between ALA and cancer since ALA is the principal source of n-3 PUFA in the Western diet and the conversion of ALA to EPA and DHA is not efficient in humans. In addition, the specific anticancer roles of individual n-3 PUFA, alone, have not yet been identified. Therefore, the present review evaluates ALA, EPA and DHA consumed individually as well as in n-3 PUFA mixtures. Also, their role in the prevention of BC and potential anticancer mechanisms of action are examined. Overall, this review suggests that each n-3 PUFA has promising anticancer effects and warrants further research.

150 citations


Network Information
Related Topics (5)
Fatty acid
74.5K papers, 2.2M citations
89% related
Cholesterol
44.6K papers, 1.9M citations
85% related
Oxidative stress
86.5K papers, 3.8M citations
83% related
Adipose tissue
54.6K papers, 2.5M citations
80% related
Reactive oxygen species
36.6K papers, 2M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023473
2022935
2021575
2020612
2019621
2018541