scispace - formally typeset
Search or ask a question
Topic

Docosahexaenoic acid

About: Docosahexaenoic acid is a research topic. Over the lifetime, 14412 publications have been published within this topic receiving 620852 citations. The topic is also known as: all-cis-DHA & all-cis-docosa-4,7,10,13,16,19-hexaenoic acid.


Papers
More filters
Journal ArticleDOI
TL;DR: D Dietary choline intake in the adult may also influence cognitive function via an effect on PC containing eicosapentaenoic and docosahexaenoic acids; polyunsaturated species of PC whose levels are reduced in brains from AD patients, and is associated with higher memory performance, and resistance to cognitive decline.
Abstract: Choline is an essential nutrient for humans. It is a precursor of membrane phospholipids (e.g., phosphatidylcholine (PC)), the neurotransmitter acetylcholine, and via betaine, the methyl group donor S-adenosylmethionine. High choline intake during gestation and early postnatal development in rat and mouse models improves cognitive function in adulthood, prevents age-related memory decline, and protects the brain from the neuropathological changes associated with Alzheimer’s disease (AD), and neurological damage associated with epilepsy, fetal alcohol syndrome, and inherited conditions such as Down and Rett syndromes. These effects of choline are correlated with modifications in histone and DNA methylation in brain, and with alterations in the expression of genes that encode proteins important for learning and memory processing, suggesting a possible epigenomic mechanism of action. Dietary choline intake in the adult may also influence cognitive function via an effect on PC containing eicosapentaenoic and docosahexaenoic acids; polyunsaturated species of PC whose levels are reduced in brains from AD patients, and is associated with higher memory performance, and resistance to cognitive decline.

148 citations

Journal ArticleDOI
TL;DR: DHA supplementation, which elevates brain DHA content, normalized levels of brain-derived neurotrophic factor (BDNF), synapsin I (Syn-1), cAMP-responsive element-binding protein (CREB), and calcium/calmodulin-dependent kinase II (CaMKII), and improved learning ability in FPI rats were found.
Abstract: The pathology of traumatic brain injury (TBI) is characterized by the decreased capacity of neurons to metabolize energy and sustain synaptic function, likely resulting in cognitive and emotional disorders. Based on the broad nature of the pathology, we have assessed the potential of the omega-3 fatty acid docosahexaenoic acid (DHA) to counteract the effects of concussive injury on important aspects of neuronal function and cognition. Fluid percussion injury (FPI) or sham injury was performed, and rats were then maintained on a diet high in DHA (1.2% DHA) for 12 days. We found that DHA supplementation, which elevates brain DHA content, normalized levels of brain-derived neurotrophic factor (BDNF), synapsin I (Syn-1), cAMP-responsive element-binding protein (CREB), and calcium/calmodulin-dependent kinase II (CaMKII), and improved learning ability in FPI rats. It is known that BDNF facilitates synaptic transmission and learning ability by modulating Syn-I, CREB, and CaMKII signaling. The DHA diet also counteracted the FPI-reduced manganese superoxide dismutase (SOD) and Sir2 (a NAD+-dependent deacetylase). Given the involvement of SOD and Sir2 in promoting metabolic homeostasis, DHA may help the injured brain by providing resistance to oxidative stress. Furthermore, DHA normalized levels of calcium-independent phospholipase A2 (iPLA2) and syntaxin-3, which may help preserve membrane homeostasis and function after FPI. The overall results emphasize the potential of dietary DHA to counteract broad and fundamental aspects of TBI pathology that may translate into preserved cognitive capacity.

148 citations

Journal ArticleDOI
TL;DR: The findings suggest that the plasma concentrations of EPA, DHA and (n-3) HUFA might be useful biomarkers for the assessment of relative FA intakes without considering associations with habitual exercise, alcohol intake and smoking habit.
Abstract: A cross-sectional study was conducted to clarify the associations of lifestyle factors (habitual exercise, alcohol intake and smoking habit) and plasma fatty acid (FA) concentrations as biomarkers of dietary FA intakes. We collected 7-d weighed diet records, lifestyle information and blood samples from 15 male and 79 female Japanese dietitians, and estimated dietary FA intakes and analyzed plasma FA concentrations. Plasma concentrations of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and (n-3) highly unsaturated FA (HUFA) derived from marine foods, but not linoleic and alpha-linolenic acid from plant origins, demonstrated positive correlations with dietary intakes (r = 0.303-0.602, P < 0.05) in both genders. Multiple linear regression analyses adjusted for age, BMI, total energy intake, fat (or respective FA) consumption and lifestyle factors showed that dietary intakes of EPA, DHA and (n-3) HUFA were positively associated with age in men (P < 0.05) and negatively associated with BMI in women [P < 0.01 for DHA and (n-3) HUFA]. The plasma concentrations of EPA, DHA and (n-3) HUFA in women were found to be positively associated with age and marine oil (or respective FA) intake (P < 0.01), and negatively associated with total energy intake [P < 0.05 for EPA and (n-3) HUFA]. Lifestyle factors were not associated with dietary FA intakes and plasma FA concentrations. These findings suggest that the plasma concentrations of EPA, DHA and (n-3) HUFA might be useful biomarkers for the assessment of relative FA intakes without considering associations with habitual exercise, alcohol intake and smoking habit.

148 citations

Journal ArticleDOI
TL;DR: The role of fatty acid inflammatory and resolving mediators is focused on and the clinical and epidemiologic data on how diet and obesity alter fatty acid profiles that can contribute to asthma are summarized.
Abstract: Fatty acids and consequently diet play an essential role in the formation of inflammatory mediators involved in the pathogenesis of asthma. Because intake variations of omega-6 (n-6) and omega-3 (n-3) fatty acids ultimately determine cell membrane incorporation, changes in diet have the potential to modify downstream production of inflammatory mediators derived from these compounds. It has long been hypothesized that decreasing the n-6/n-3 ratio could reduce the production of more proinflammatory mediators while increasing the formation of downstream metabolites that can serve to limit or resolve inflammation. In turn, these changes would result in improved asthma outcomes or would lower the risk for asthma incidence. This review will focus on the role of fatty acid inflammatory and resolving mediators and will summarize the clinical and epidemiologic data on how diet and obesity alter fatty acid profiles that can contribute to asthma.

148 citations

Journal ArticleDOI
TL;DR: This work reviews the nutritional significance, medical uses and natural occurrence of SA, and suggests that vegetable oils containing SA may become a dietary source of n-3 fatty acids that is more effective in increasing tissue n- 3 PUFA concentrations than the current ALA-containing vegetable oils.
Abstract: Stearidonic acid (SA, 18:4n-3) is a polyunsaturated fatty acid (PUFA) that constitutes the first metabolite of α-linolenic acid (ALA, 18:3n-3) in the metabolic pathway leading to C20–22 PUFA, such as eicosapentaenoic acid (EPA, 20:5n-3), and docosahexaenoic acid (DHA, 22:6n-3), which recently have received much attention because of their various physiological functions in the human body. Recently, several studies indicated that dietary SA increased EPA more efficiently than ALA. Thus, vegetable oils containing SA may become a dietary source of n-3 fatty acids that is more effective in increasing tissue n-3 PUFA concentrations than the current ALA-containing vegetable oils. Nevertheless, few SA sources occur in nature, although there are still a large number of species untested to date. SA has been detected in variable amounts in several species of algae, fungi and animals tissues, but the seeds of some plant families seem to be better sources of SA, especially Echium (Boraginaceae) species. This work reviews the nutritional significance, medical uses and natural occurrence of SA.

148 citations


Network Information
Related Topics (5)
Fatty acid
74.5K papers, 2.2M citations
89% related
Cholesterol
44.6K papers, 1.9M citations
85% related
Oxidative stress
86.5K papers, 3.8M citations
83% related
Adipose tissue
54.6K papers, 2.5M citations
80% related
Reactive oxygen species
36.6K papers, 2M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023482
2022944
2021578
2020612
2019626
2018544