scispace - formally typeset
Search or ask a question
Topic

Docosahexaenoic acid

About: Docosahexaenoic acid is a research topic. Over the lifetime, 14412 publications have been published within this topic receiving 620852 citations. The topic is also known as: all-cis-DHA & all-cis-docosa-4,7,10,13,16,19-hexaenoic acid.


Papers
More filters
Journal ArticleDOI
TL;DR: This Opinion of the EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) deals with the setting of Dietary Reference Values (DRVs) for fats and it was decided not to propose a reference value beside the limitation on the intake of SFA.
Abstract: This Opinion of the EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) deals with the setting of Dietary Reference Values (DRVs) for fats. A lower bound of the reference intake range for total fat of 20 energy % (E%) and an upper bound of 35 E% are proposed. Fat intake in infants can gradually be reduced from 40 E% in the 6 12 month period to 35–40 E% in the 2nd and 3rd year of life. For specific fatty acids the following is proposed: saturated fatty acid (SFA) and trans fatty acid intake should be as low as possible; not to set any DRV for cis-monounsaturated fatty acids; not to formulate a DRV for the intake of total cis-polyunsaturated fatty acids (PUFA); not to set specific values for the n-3/n-6 ratio; to set an Adequate Intake (AI) of 4 E% for linolenic acid; not to set any DRV for arachidonic acid; not to set an UL for total or any of the n 6 PUFA; to set an AI for alpha-linilenic acid (ALA) of 0.5 E% not to set an UL for ALA; to set an AI of 250 mg for eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) for adults; to set an AI of 100 mg DHA for infants (>6 months) and young children <24 months; to increase by 100 200 mg preformed DHA in addition to the AI for adults as an adequate supply of n-3 long chain PUFA during pregnancy and lactation; not to set any DRV for conjugated linoleic acid. For cholesterol it was decided not to propose a reference value beside the limitation on the intake of SFA.

1,014 citations

Journal ArticleDOI
TL;DR: The association of DHA deficiency with depression is the reason for the robust positive correlation between depression and myocardial infarction, and patients with cardiovascular disease or Type II diabetes are often advised to adopt a low-fat diet with a high proportion of carbohydrate.

1,005 citations

Journal ArticleDOI
TL;DR: Alternative strategies, such as food enrichment and the use of biotechnology to manipulate the EPA and DHA as well as ALA contents of the food supply, will become increasingly important in increasing n-3 fatty acid intake in the US population.

997 citations

Journal ArticleDOI
TL;DR: Evidence suggests that increased consumption of n-3 FAs from fish or fish-oil supplements, but not of alpha-linolenic acid, reduces the rates of all-cause mortality, cardiac and sudden death, and possibly stroke.

996 citations

Journal ArticleDOI
TL;DR: Animal models demonstrate benefit from n-3 fatty acids in rheumatoid arthritis (RA), inflammatory bowel disease (IBD) and asthma, and clinical trails of fish oil in patients with IBD and asthma are inconsistent with no overall clear evidence of efficacy.
Abstract: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are n-3 fatty acids found in oily fish and fish oil supplements. These fatty acids are able to inhibit partly a number of aspects of inflammation including leucocyte chemotaxis, adhesion molecule expression and leucocyte-endothelial adhesive interactions, production of eicosanoids like prostaglandins and leukotrienes from the n-6 fatty acid arachidonic acid, production of inflammatory cytokines and T cell reactivity. In parallel, EPA gives rise to eicosanoids that often have lower biological potency than those produced from arachidonioc acid and EPA and DHA give rise to anti-inflammatory and inflammation resolving resolvins and protectins. Mechanisms underlying the anti-inflammatory actions of n-3 fatty acids include altered cell membrane phospholipid fatty acid composition, disruption of lipid rafts, inhibition of activation of the pro-inflammatory transcription factor nuclear factor kappa B so reducing expression of inflammatory genes, activation of the anti-inflammatory transcription factor NR1C3 (i.e. peroxisome proliferator activated receptor ?) and binding to the G protein coupled receptor GPR120. These mechanisms are interlinked. In adult humans, an EPA plus DHA intake greater than 2?g?day(-1) seems to be required to elicit anti-inflammatory actions, but few dose finding studies have been performed. Animal models demonstrate benefit from n-3 fatty acids in rheumatoid arthritis (RA), inflammatory bowel disease (IBD) and asthma. Clinical trials of fish oil in patients with RA demonstrate benefit supported by meta-analyses of the data. Clinical trails of fish oil in patients with IBD and asthma are inconsistent with no overall clear evidence of efficacy.

984 citations


Network Information
Related Topics (5)
Fatty acid
74.5K papers, 2.2M citations
89% related
Cholesterol
44.6K papers, 1.9M citations
85% related
Oxidative stress
86.5K papers, 3.8M citations
83% related
Adipose tissue
54.6K papers, 2.5M citations
80% related
Reactive oxygen species
36.6K papers, 2M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023473
2022935
2021575
2020612
2019621
2018541