scispace - formally typeset
Topic

Document retrieval

About: Document retrieval is a(n) research topic. Over the lifetime, 6821 publication(s) have been published within this topic receiving 214383 citation(s).


Papers
More filters
Journal ArticleDOI
TL;DR: A new method for automatic indexing and retrieval to take advantage of implicit higher-order structure in the association of terms with documents (“semantic structure”) in order to improve the detection of relevant documents on the basis of terms found in queries.
Abstract: A new method for automatic indexing and retrieval is described. The approach is to take advantage of implicit higher-order structure in the association of terms with documents (“semantic structure”) in order to improve the detection of relevant documents on the basis of terms found in queries. The particular technique used is singular-value decomposition, in which a large term by document matrix is decomposed into a set of ca. 100 orthogonal factors from which the original matrix can be approximated by linear combination. Documents are represented by ca. 100 item vectors of factor weights. Queries are represented as pseudo-document vectors formed from weighted combinations of terms, and documents with supra-threshold cosine values are returned. initial tests find this completely automatic method for retrieval to be promising.

12,005 citations

Book
01 Jan 2008
TL;DR: In this article, the authors present an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections.
Abstract: Class-tested and coherent, this groundbreaking new textbook teaches web-era information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. Written from a computer science perspective by three leading experts in the field, it gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Although originally designed as the primary text for a graduate or advanced undergraduate course in information retrieval, the book will also create a buzz for researchers and professionals alike.

11,798 citations

Journal ArticleDOI
TL;DR: An approach based on space density computations is used to choose an optimum indexing vocabulary for a collection of documents, demonstating the usefulness of the model.
Abstract: In a document retrieval, or other pattern matching environment where stored entities (documents) are compared with each other or with incoming patterns (search requests), it appears that the best indexing (property) space is one where each entity lies as far away from the others as possible; in these circumstances the value of an indexing system may be expressible as a function of the density of the object space; in particular, retrieval performance may correlate inversely with space density. An approach based on space density computations is used to choose an optimum indexing vocabulary for a collection of documents. Typical evaluation results are shown, demonstating the usefulness of the model.

6,281 citations


Network Information
Related Topics (5)
Web page
50.3K papers, 975.1K citations
81% related
Metadata
43.9K papers, 642.7K citations
79% related
Recommender system
27.2K papers, 598K citations
79% related
Ontology (information science)
57K papers, 869.1K citations
78% related
Natural language
31.1K papers, 806.8K citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20223
2021107
2020130
2019144
2018111
2017129