scispace - formally typeset
Search or ask a question
Topic

Domain-specific language

About: Domain-specific language is a research topic. Over the lifetime, 3209 publications have been published within this topic receiving 58274 citations. The topic is also known as: DSL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors identify patterns in the decision, analysis, design, and implementation phases of DSL development and discuss domain analysis tools and language development systems that may help to speed up DSL development.
Abstract: Domain-specific languages (DSLs) are languages tailored to a specific application domain. They offer substantial gains in expressiveness and ease of use compared with general-purpose programming languages in their domain of application. DSL development is hard, requiring both domain knowledge and language development expertise. Few people have both. Not surprisingly, the decision to develop a DSL is often postponed indefinitely, if considered at all, and most DSLs never get beyond the application library stage.Although many articles have been written on the development of particular DSLs, there is very limited literature on DSL development methodologies and many questions remain regarding when and how to develop a DSL. To aid the DSL developer, we identify patterns in the decision, analysis, design, and implementation phases of DSL development. Our patterns improve and extend earlier work on DSL design patterns. We also discuss domain analysis tools and language development systems that may help to speed up DSL development. Finally, we present a number of open problems.

1,778 citations

Journal ArticleDOI
TL;DR: The literature available on the topic of domain-specific languages as used for the construction and maintenance of software systems is surveyed, and a selection of 75 key publications in the area is listed.
Abstract: We survey the literature available on the topic of domain-specific languages as used for the construction and maintenance of software systems. We list a selection of 75 key publications in the area, and provide a summary for each of the papers. Moreover, we discuss terminology, risks and benefits, example domain-specific languages, design methodologies, and implementation techniques.

1,538 citations

Book
23 Sep 2010
TL;DR: This book covers a variety of different techniques available for DSLs and can be used with whatever programming language you happen to be using, most of the examples are in Java or C#.
Abstract: Designed as a wide-ranging guide to Domain Specific Languages (DSLs) and how to approach building them, this book covers a variety of different techniques available for DSLs. The goal is to provide readers with enough information to make an informed choice about whether or not to use a DSL and what kinds of DSL techniques to employ. Part I is a 150-page narrative overview that gives you a broad understanding of general principles. The reference material in Parts II through VI provides the details and examples you willneed to get started using the various techniques discussed. Both internal and external DSL topics are covered, in addition to alternative computational models and code generation. Although the general principles and patterns presented can be used with whatever programming language you happen to be using, most of the examples are in Java or C#.

908 citations

Journal ArticleDOI
TL;DR: It is postulate here that two core relations (representation and conformance) are associated to this principle, as inheritance and instantiation were associated to the object unification principle in the class-based languages of the 80’s.
Abstract: In November 2000, the OMG made public the MDA™initiative, a particular variant of a new global trend called MDE (Model Driven Engineering). The basic ideas of MDA are germane to many other approaches such as generative programming, domain specific languages, model-integrated computing, generic model management, software factories, etc. MDA may be defined as the realization of MDE principles around a set of OMG standards like MOF, XMI, OCL, UML, CWM, SPEM, etc. MDE is presently making several promises about the potential benefits that could be reaped from a move from code-centric to model-based practices. When we observe these claims, we may wonder when they may be satisfied: on the short, medium or long term or even never perhaps for some of them. This paper tries to propose a vision of the development of MDE based on some lessons learnt in the past 30 years in the development of object technology. The main message is that a basic principle ("Everything is an object") was most helpful in driving the technology in the direction of simplicity, generality and power of integration. Similarly in MDE, the basic principle that "Everything is a model" has many interesting properties, among others the capacity to generate a realistic research agenda. We postulate here that two core relations (representation and conformance) are associated to this principle, as inheritance and instantiation were associated to the object unification principle in the class-based languages of the 80's. We suggest that this may be most useful in understanding many questions about MDE in general and the MDA approach in particular. We provide some illustrative examples. The personal position taken in this paper would be useful if it could generate a critical debate on the research directions in MDE.

873 citations

Journal Article
TL;DR: CVXPY as mentioned in this paper is a domain-specific language for convex optimization embedded in Python, which allows the user to express convex optimisation problems in a natural syntax that follows the math, rather than in the restrictive standard form required by solvers.
Abstract: CVXPY is a domain-specific language for convex optimization embedded in Python. It allows the user to express convex optimization problems in a natural syntax that follows the math, rather than in the restrictive standard form required by solvers. CVXPY makes it easy to combine convex optimization with high-level features of Python such as parallelism and object-oriented design. CVXPY is available at http://www.cvxpy.org/ under the GPL license, along with documentation and examples.

873 citations


Network Information
Related Topics (5)
Component-based software engineering
24.2K papers, 461.9K citations
91% related
Model checking
16.9K papers, 451.6K citations
90% related
Software development process
23.7K papers, 420K citations
89% related
Software development
73.8K papers, 1.4M citations
88% related
Object (computer science)
106K papers, 1.3M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202324
202276
202190
2020150
2019167
2018201