scispace - formally typeset
Search or ask a question

Showing papers on "Doppler broadening published in 2016"


Journal ArticleDOI
TL;DR: In this article, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (∼90°C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutron irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300°C.

103 citations


Journal ArticleDOI
TL;DR: In this paper, the rotational Doppler frequency of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry was determined for the second harmonic generation signal with circular polarization opposite to that of the fundamental beam.
Abstract: The change in pitch of a passing car engine is a classic example of the translational Doppler effect, but rotational Doppler shifts can also arise, as shown for circularly polarized light passing through a spinning nonlinear optical crystal. The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies1,2,3,4,5,6,7,8, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms9 and has benefited cooling and trapping of atoms with laser light10,11,12. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves13—the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.

89 citations


Journal ArticleDOI
TL;DR: In this article, the authors analyzed all available observations of GX 339--4 by XMM-Newton in the hard spectral state and jointly fit the spectral data by Comptonization and the currently best reflection code, relxill.
Abstract: We analyse all available observations of GX 339--4 by XMM-Newton in the hard spectral state. We jointly fit the spectral data by Comptonization and the currently best reflection code, relxill. We consider in detail a contribution from a standard blackbody accretion disc, testing whether its inner radius can be set equal to that of the reflector. However, this leads to an unphysical behaviour of the disc truncation radius, implying the soft X-ray component is not a standard blackbody disc. This appears to be due to irradiation by the hard X-rays, which strongly dominate the total emission. We consider a large array of models, testing, e.g., the effects of the chosen energy range, of adding unblurred reflection, and assuming a lamppost geometry. We find the effects of relativistic broadening to be relatively weak in all cases. In the coronal models, we find the inner radius to be large. In the lamppost model, the inner radius is unconstrained, but when fixed to the innermost stable orbit, the height of the source is large, which also implies a weak relativistic broadening. In the former models, the inner radius correlates with the X-ray hardness ratio, which is consistent with the presence of a truncated disc turning into a complete disc in the soft state. We also find the degree of the disc ionization to anti-correlate with the hardness, leading to strong spectral broadening due to scattering of reflected photons in the reflector in the softest studied states.

85 citations


Journal ArticleDOI
TL;DR: Simulations manifest the peak power scalability of the concept and show that it is applicable to a wide range of input pulse durations and energies.
Abstract: Spectral broadening in bulk material is a simple, robust and low-cost method to extend the bandwidth of a laser source. Consequently, it enables ultrashort pulse compression. Experiments with a 38 MHz repetition rate, 50 W average power Kerr-lens mode-locked thin-disk oscillator were performed. The initially 1.2 μJ, 250 fs pulses are compressed to 43 fs by means of self-phase modulation in a single 15 mm thick quartz crystal and subsequent chirped-mirror compression. The losses due to spatial nonlinear effects are only about 40 %. A second broadening stage reduced the Fourier transform limit to 15 fs. It is shown that the intensity noise of the oscillator is preserved independent of the broadening factor. Simulations manifest the peak power scalability of the concept and show that it is applicable to a wide range of input pulse durations and energies.

76 citations


Journal ArticleDOI
Wei Liu, Chen Li1, Zhigang Zhang1, Franz X. Kärtner, Guoqing Chang 
TL;DR: It is shown both numerically and experimentally that shortening the fiber used for spectral broadening while increasing the input pulse energy can overcome this dispersion-induced limitation; as a result, the filtered spectral lobes have higher power, constituting a powerful and practical approach for energy scaling the resulting femtosecond sources.
Abstract: We propose and demonstrate a new approach to implement a wavelength-tunable ultrafast fiber laser source suitable for multiphoton microscopy. We employ fiber-optic nonlinearities to broaden a narrowband optical spectrum generated by an Yb-fiber laser system and then use optical bandpass filters to select the leftmost or rightmost spectral lobes from the broadened spectrum. Detailed numerical modeling shows that self-phase modulation dominates the spectral broadening, self-steepening tends to blue shift the broadened spectrum, and stimulated Raman scattering is minimal. We also find that optical wave breaking caused by fiber dispersion slows down the shift of the leftmost/rightmost spectral lobes and therefore limits the wavelength tuning range of the filtered spectra. We show both numerically and experimentally that shortening the fiber used for spectral broadening while increasing the input pulse energy can overcome this dispersion-induced limitation; as a result, the filtered spectral lobes have higher power, constituting a powerful and practical approach for energy scaling the resulting femtosecond sources. We use two commercially available photonic crystal fibers to verify the simulation results. More specific, use of 20-mm fiber NL-1050-ZERO-2 enables us to implement an Yb-fiber laser based ultrafast source, delivering femtosecond (70-120 fs) pulses tunable from 825 nm to 1210 nm with >1 nJ pulse energy.

70 citations


Journal ArticleDOI
TL;DR: In this paper, the J-TEXT electron cyclotron emission (ECE) diagnostic system was improved to meet experimental requirements, the front end antenna and transmission line have been modified and a new 8-channel W-band detecting unit has been developed.
Abstract: To meet experimental requirements, the J-TEXT electron cyclotron emission (ECE) diagnostic is being upgraded. The front end antenna and transmission line have been modified and a new 8-channel W-band detecting unit has been developed. The improved ECE system will extend the frequency range from 94.5-124.5 GHz to 80.5-124.5 GHz. This will enable the system to cover the most plasma in the radius direction for BT = 1.8–2.2 T, and it even can cover almost the whole plasma range ρ = − 0.8–0.9 (minus means the high field side) at BT = 1.8 T. A new auxiliary channel bank with 8 narrow band, tunable yttrium iron garnet filters is planned to add to the ECE system. Due to observations along a major radius, perpendicular to BT, and relatively low electron temperature, Doppler and relativistic broadening are minimal and thus high spatial resolution measurements can be made at variable locations with these tunable channels.

67 citations


Journal ArticleDOI
TL;DR: Numerical simulations reveal that the spectral broadening of the bandwidth grows almost linearly with injected mode number, which provides a potential way to further suppress the nonlinear spectralbroadening in high-power fiber lasers.
Abstract: High-power continuous wave fiber lasers with narrow linewidths are required for spectral beam combining systems. A 2.9 kW Yb-doped fiber laser with an output linewidth as narrow as 0.31 nm employing a narrow-linewidth multilongitudinal-mode oscillator is experimentally demonstrated. The numerical simulations reveal that the spectral broadening of the bandwidth grows almost linearly with injected mode number, which provides a potential way to further suppress the nonlinear spectral broadening in high-power fiber lasers.

52 citations


Journal ArticleDOI
01 Feb 2016-Small
TL;DR: Broad visible photodetectors based on individual Pb ion exchanged CdS nanowires are reported and the broadening of the response spectrum is relative to electronic band structure transition caused by the tensile strain in the lattice.
Abstract: Broad visible photodetectors based on individual Pb ion exchanged CdS nanowires are reported. They are prepared via an ion exchange reaction initiated on the surface of CdS nanowires with a further diffusion of ionic reactants. The broadening of the response spectrum is relative to electronic band structure transition caused by the tensile strain in the lattice.

51 citations


Journal ArticleDOI
TL;DR: In this article, an X-ray spectral model of reprocessing by a torus in an active galactic nucleus (AGN) with the Monte Carlo simulation framework MONACO is presented.
Abstract: We construct an X-ray spectral model of reprocessing by a torus in an active galactic nucleus (AGN) with the Monte Carlo simulation framework MONACO. Two torus geometries of smooth and clumpy cases are considered and compared. In order to reproduce a Compton shoulder accurately, MONACO includes not only free electron scattering but also bound electron scattering. Raman and Rayleigh scattering are also treated, and scattering cross sections dependent on chemical states of hydrogen and helium are included. Doppler broadening by turbulence velocity can be implemented. Our model gives results consistent with other available models, such as MYTorus, except for differences due to different physical parameters and assumptions. We studied the dependence on torus parameters for a Compton shoulder, and found that a intensity ratio of a Compton shoulder to the line core mainly depends on column density, inclination angle, and metal abundance. For instance, an increase of metal abundance makes a Compton shoulder relatively weak. Also, the shape of a Compton shoulder depends on the column density. Furthermore, these dependences become different between smooth and clumpy cases. Then, we discuss the possibility of ASTRO-H/SXS spectroscopy of Compton shoulders in AGN reflection spectra.

50 citations


Journal ArticleDOI
TL;DR: In this article, an X-ray spectral model of reprocessing by a torus in an active galactic nucleus (AGN) with a Monte Carlo simulation framework was presented.
Abstract: We construct an X-ray spectral model of reprocessing by a torus in an active galactic nucleus (AGN) with a Monte Carlo simulation framework MONACO. Two torus geometries of smooth and clumpy cases are considered and compared. In order to reproduce a Compton shoulder accurately, MONACO includes not only free electron scattering but also bound electron scattering. Raman and Reyleigh scattering are also treated, and scattering cross sections dependent on chemical states of hydrogen and helium are included. Doppler broadening by turbulence velocity can be implemented. Our model gives consistent results with other available models, such as MYTorus, except for differences due to different physical parameters and assumptions. We studied the dependence on torus parameters for Compton shoulder, and found that a intensity ratio of Compton shoulder to line core mainly depends on the column density, inclination angle, and metal abundance. For instance, an increase of metal abundance makes the Compton shoulder relatively weak. Also, shape of Compton shoulder depends on the column density. Furthermore, these dependences become different between smooth and clumpy cases. Then, we discuss the possibility of ASTRO-H SXS spectroscopy of Compton shoulder in AGN reflection spectra.

48 citations


Journal ArticleDOI
TL;DR: The main requirements for low-uncertainty DBT, of both theoretical and technical nature, will be discussed, with a special focus on those related to the line shape model and to the frequency scale.
Abstract: Laser spectroscopy in the linear regime of radiation-matter interaction is a powerful tool for measuring thermodynamic quantities in a gas at thermodynamic equilibrium. In particular, the Doppler effect can be considered a gift of nature, linking the thermal energy to an optical frequency, namely the line centre frequency of an atomic or molecular spectral line. This is the basis of a relatively new method of primary gas thermometry, known as Doppler broadening thermometry (DBT). This paper reports on the efforts that have been carried out, in the last decade, worldwide, to the end of making DBT competitive with more consolidated and accurate methodologies, such as acoustic gas thermometry and dielectric constant gas thermometry. The main requirements for low-uncertainty DBT, of both theoretical and technical nature, will be discussed, with a special focus on those related to the line shape model and to the frequency scale. A deep comparison among the different molecules that have been selected in successful DBT implementations is also reported. Finally, for the first time, to the best of my knowledge, the influence of refractive index effects is discussed.

Journal ArticleDOI
TL;DR: This work investigates the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters and anomalous dispersion at 1.55 μm wavelength of input light.
Abstract: CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra – silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 μm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W−1/m) and anomalous dispersion at 1.55 μm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two – fold self phase modulation induced spectral broadening is observed using waveguides only 430 μm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms.

Journal ArticleDOI
TL;DR: The spectral broadening of gamma-rays from fusion plasmas can be measured in high-resolution gamma-ray spectrometry (GRS) as mentioned in this paper, where weight functions that determine the observable velocity space are derived.
Abstract: The spectral broadening of gamma-rays from fusion plasmas can be measured in high-resolution gamma-ray spectrometry (GRS). We derive weight functions that determine the observable velocity space an ...

Journal ArticleDOI
TL;DR: In this paper, a defocusing lens made of TF12 heavy flint glass was used to generate an almost constant spectral broadening across a Gaussian beam profile, such that the product of the thickness with intensity is constant.
Abstract: An original method for retrieving the Kerr nonlinear index was proposed and implemented for TF12 heavy flint glass. Then, a defocusing lens made of this highly nonlinear glass was used to generate an almost constant spectral broadening across a Gaussian beam profile. The lens was designed with spherical curvatures chosen in order to match the laser beam profile, such that the product of the thickness with intensity is constant. This solid-state optics in combination with chirped mirrors was used to decrease the pulse duration at the output of a terawatt-class femtosecond laser. We demonstrated compression of a 33 fs pulse to 16 fs with 170 mJ energy.

Journal ArticleDOI
TL;DR: In this article, the authors used time-dependent density functional theory in conjunction with the CAM-B3LYP functional and MWB28/aug-cc-pVDZ basis set to determine non-, near-, and on-resonance Raman spectra for a complex formed by 4-mercaptopyridine (4-Mpy) binding with a Ag13 cluster via the thiolate Ag-S bond.
Abstract: We have used time-dependent density functional theory in conjunction with the CAM-B3LYP functional and MWB28/aug-cc-pVDZ basis set to determine non-, near-, and on-resonance Raman spectra for a complex formed by 4-mercaptopyridine (4-Mpy) binding with a Ag13 cluster via the thiolate Ag–S bond. Geometry optimizations of the Ag13-4-Mpy complex showed an on-top structure directly bound to one Ag atom with the ring of the molecule almost flat with respect to two Ag atoms of the complex. The corresponding B3LYP/MWB28/aug-cc-pVDZ geometry is also an on-top structure directly bound to one Ag atom, but the molecule is directed away from the surface. The near-resonance Raman calculations were carried out in the infinite lifetime approximation, while the on-resonant Raman excitation profiles were calculated with the complex polarization propagator (CPP) approach, introducing a half width at half-maximum spectral broadening of 0.2 eV. Calculation of the UV–vis spectra of the isolated 4-Mpy and of the Ag13-4-Mpy comp...

Journal ArticleDOI
TL;DR: It is found that a two-stage broadening through different HNLFs is required when using limited pulse energy at a high repetition rate, which should lead to the development of multicarrier sources for wavelength-division-multiplexing communication and super-multi-point frequency calibration for spectrometers, especially in astrophysics.
Abstract: We generated a 12.5-GHz-spacing optical frequency comb that can be resolved over 100 THz, from 1040 to 1750 nm, without spectral mode filtering. To cover such a broad spectrum, we used electro-optic modulation of single frequency light and line-by-line pulse synthesis to produce a clear pulse train and subsequent spectral broadening in highly nonlinear fibers (HNLFs). We numerically and experimentally investigated a configuration of the HNLFs and find that a two-stage broadening through different HNLFs is required when using limited pulse energy at a high repetition rate. We designed and fabricated solid silica-based HNLFs with small zero-dispersion wavelengths to obtain strong spectral broadening, especially at the shorter wavelengths. The individual lines of the proposed frequency comb are resolvable with high contrast over the entire spectral range. The results described in this paper should lead to the development of multicarrier sources for wavelength-division-multiplexing communication and super-multi-point frequency calibration for spectrometers, especially in astrophysics.

Journal ArticleDOI
TL;DR: The experiment suggests that the applicability of monolayered quantum emitters as coherent single photon sources at elevated temperatures may be limited, but the capability to operate them below the GaAs band-edge makes them highly interesting for GaAs-monolayer hybrid quantum photonic structures.
Abstract: We study trapped single excitons in a monolayer semiconductor with respect to their temperature stability, spectral diffusion and decay dynamics. In a mechanically exfoliated WSe2 sheet, we could identify discrete emission features with emission energies down to 1.516 eV which are spectrally isolated in a free spectral range up to 80 meV. The strong spectral isolation of our localized emitter allow us to identify strong signatures of phonon induced spectral broadening for elevated temperatures accompanied by temperature induced luminescence quenching. A direct correlation between the droop in intensity at higher temperatures with the phonon induced population of dark states in WSe2 is established. While our experiment suggests that the applicability of monolayered quantum emitters as coherent single photon sources at elevated temperatures may be limited, the capability to operate them below the GaAs band-edge makes them highly interesting for GaAs-monolayer hybrid quantum photonic structures.

Journal ArticleDOI
TL;DR: Measurements of line intensities and temperature-dependent broadening coefficients of NH3 with Ar, N2, O2, CO2, H2O, and NH3 for nine sQ(J,K) transitions in the ν2 fundamental band aid the development of mid-infrared NH3 sensors for a broad range of gas mixtures and at elevated temperatures.
Abstract: We report measured line intensities and temperature-dependent broadening coefficients of NH3 with Ar, N2, O2, CO2, H2O, and NH3 for nine sQ(J,K) transitions in the ν2 fundamental band in the frequency range 961.5–967.5 cm−1. This spectral region was chosen due to the strong NH3 absorption strength and lack of spectral interference from H2O and CO2 for laser-based sensing applications. Spectroscopic parameters were determined by multi-line fitting using Voigt lineshapes of absorption spectra measured with two quantum cascade lasers in thermodynamically-controlled optical cells. The temperature dependence of broadening was measured over a range of temperatures between 300 and 600 K. These measurements aid the development of mid-infrared NH3 sensors for a broad range of gas mixtures and at elevated temperatures.

Journal ArticleDOI
TL;DR: In this paper, a fast Resonance Interference Factor (RIF) scheme is proposed to treat the resonance interference effect in the Fluoride salt-cooled High-temperature Reactor (FHR).

Journal ArticleDOI
TL;DR: Both the simulated and real data processing results show that the proposed synthetic aperture radar (SAR) imaging method can finely image a ground moving target in a high signal-to-clutter and noise ratio (SCNR) environment.

Journal ArticleDOI
TL;DR: The role of ensemble averaging is explored in realistic distributions of isolated or weakly-interacting noble-metal nanoparticles, as encountered in experiments, while an analytical expression to evaluate the importance of inhomogeneous broadening through measurable quantities is developed.
Abstract: Contrary to classical predictions, the optical response of few-nm plasmonic particles depends on particle size due to effects such as nonlocality and electron spill-out. Ensembles of such nanoparticles are therefore expected to exhibit a nonclassical inhomogeneous spectral broadening due to size distribution. For a normal distribution of free-electron nanoparticles, and within the simple nonlocal hydrodynamic Drude model, both the nonlocal blueshift and the plasmon linewidth are shown to be considerably affected by ensemble averaging. Size-variance effects tend however to conceal nonlocality to a lesser extent when the homogeneous size-dependent broadening of individual nanoparticles is taken into account, either through a local size-dependent damping model or through the Generalized Nonlocal Optical Response theory. The role of ensemble averaging is further explored in realistic distributions of isolated or weakly-interacting noble-metal nanoparticles, as encountered in experiments, while an analytical expression to evaluate the importance of inhomogeneous broadening through measurable quantities is developed. Our findings are independent of the specific nonclassical theory used, thus providing important insight into a large range of experiments on nanoscale and quantum plasmonics.

Journal ArticleDOI
TL;DR: A novel comb-assisted spectrometer ensuring over a broad range of intra-cavity field enhancement up to 1.5 kW/cm2, suitable for saturation of transitions with extremely weak electric dipole moments, suitable to explore thousands of lines of several molecules never observed so far in a Doppler-free regime.
Abstract: Overcoming the Doppler broadening limit is a cornerstone of precision spectroscopy. Nevertheless, the achievement of a Doppler-free regime is severely hampered by the need of high field intensities to saturate absorption transitions and of a high signal-to-noise ratio to detect tiny Lamb-dip features. Here we present a novel comb-assisted spectrometer ensuring over a broad range from 1.5 to 1.63 μm intra-cavity field enhancement up to 1.5 kW/cm2, which is suitable for saturation of transitions with extremely weak electric dipole moments. Referencing to an optical frequency comb allows the spectrometer to operate with kHz-level frequency accuracy, while an extremely tight locking of the probe laser to the enhancement cavity enables a 10−11 cm−1 absorption sensitivity to be reached over 200 s in a purely dc direct-detection-mode at the cavity output. The particularly simple and robust detection and operating scheme, together with the wide tunability available, makes the system suitable to explore thousands of lines of several molecules never observed so far in a Doppler-free regime. As a demonstration, Lamb-dip spectroscopy is performed on the P(15) line of the 01120-00000 band of acetylene, featuring a line-strength below 10−23 cm/mol and an Einstein coefficient of 5 mHz, among the weakest ever observed.

Journal ArticleDOI
TL;DR: In this paper, a spectroscopic study of a pulsed plasma deflagration accelerator is carried out that confirms the existence of a strong compression in the emerging jet at the exit plane of the device.
Abstract: A spectroscopic study of a pulsed plasma deflagration accelerator is carried out that confirms the existence of a strong compression in the emerging jet at the exit plane of the device. An imaging spectrometer is used to collect broadened Hα emission from a transaxial slice of the emerging jet at high spatial resolution, and the radial plasma density profile is computed from Voigt fits of the Abel inverted emissivity profiles. The plasma temperature, determined via Doppler broadening of impurity line emission, is compared against the temperature predictions of a radial magnetohydrodynamic equilibrium model applied to the measured density profiles. Empirical scaling laws developed for the plasma density, combined with the measured and predicted temperatures, indicate that a radially equilibrated Z-pinch is formed within the expelled plasma jet at the exit plane during the deflagration process.

Journal ArticleDOI
18 Nov 2016
TL;DR: In this article, a detailed experimental parameter study on mid-IR supercontinuum generation in W-type index tellurite fibers is presented, which reveals how the core diameter, pump wavelength, fiber length, and pump power dramatically influence the spectral broadening.
Abstract: We present a detailed experimental parameter study on mid-IR supercontinuum generation in W-type index tellurite fibers, which reveals how the core diameter, pump wavelength, fiber length, and pump power dramatically influence the spectral broadening. As pump source, we use femtosecond mid-IR pulses from a post-amplified optical parametric oscillator tunable between 1.7 μm and 4.1 μm at 43 MHz repetition rate. We are able to generate red-shifted dispersive waves up to a wavelength of 5.1 μm by pumping a tellurite fiber in the anomalous dispersion regime between its two zero dispersion wavelengths. Distinctive soliton dynamics can be identified as the main broadening mechanism resulting in a maximum spectral width of over 2000 nm with output powers of up to 160 mW. We experimentally demonstrated that efficient spectral broadening with considerably improved power proportion in the important first atmospheric transmission window between 3 and 5 μm can be achieved in robust W-type tellurite fibers pumped at long wavelengths by ultra-fast lasers.

Journal ArticleDOI
TL;DR: In this article, pressure broadening of the (2p 4 3 P 2 → 3p 3 P J = 0,1,2) two-photon transition in oxygen atoms was investigated using a high-resolution TALIF technique in normal and Doppler-free configurations.
Abstract: Atomic oxygen, considered to be a determining reactant in plasma applications at ambient pressure, is routinely detected by two-photon absorption laser induced fluorescence (TALIF). Here, pressure broadening of the (2p 4 3 P 2 → 3p 3 P J=0,1,2) two-photon transition in oxygen atoms was investigated using a high-resolution TALIF technique in normal and Doppler-free configurations. The pressure broadening coefficients determined were = 0.40 ± 0.08 cm−1/bar for oxygen molecules and = 0.46 ± 0.03 cm−1/bar for helium atoms. These correspond to pressure broadening rate constants = 9 10–9 cm3 s−1 and = 4 10−9 cm3 s−1, respectively. The well-known quenching rate constants of O(3p 3 P J ) by O2 and He are at least one order of magnitude smaller, which signifies that non-quenching collisions constitute the main line-broadening mechanism. In addition to providing new insights into collisional processes of oxygen atoms in electronically excited 3p 3 P J state, reported pressure broadening parameters are important for quantification of oxygen TALIF line profiles when both collisional and Doppler broadening mechanisms are important. Thus, the Doppler component (and hence the temperature of oxygen atoms) can be accurately determined from high resolution TALIF measurements in a broad range of conditions.

Journal ArticleDOI
TL;DR: In this article, the optical response of few-nm plasmonic particles depends on particle size due to effects such as nonlocality and electron spill-out, and the spectral broadening of individual NPs is taken into account, either through a local size-dependent damping model or through the Generalized Nonlocal Optical Response (GNOR) theory.
Abstract: Contrary to classical predictions, the optical response of few-nm plasmonic particles depends on particle size due to effects such as nonlocality and electron spill-out. Ensembles of such nanoparticles (NPs) are therefore expected to exhibit a nonclassical inhomogeneous spectral broadening due to size distribution. For a normal distribution of free-electron NPs, and within the simple nonlocal Hydrodynamic Drude Model (HDM), both the nonlocal blueshift and the plasmon linewidth are shown to be considerably affected by ensemble averaging. Size-variance effects tend however to conceal nonlocality to a lesser extent when the homogeneous size-dependent broadening of individual NPs is taken into account, either through a local size-dependent damping (SDD) model or through the Generalized Nonlocal Optical Response (GNOR) theory. The role of ensemble averaging is further explored in realistic distributions of noble-metal NPs, as encountered in experiments, while an analytical expression to evaluate the importance of inhomogeneous broadening through measurable quantities is developed. Our findings are independent of the specific nonclassical theory used, thus providing important insight into a large range of experiments on nanoscale and quantum plasmonics.

Journal ArticleDOI
TL;DR: In this paper, the shape parameter S for the Doppler broadening spectrum corresponding to positron annihilation at the surface was found to be decreased by illumination within energy ranges of 1.5-2.6

Journal ArticleDOI
TL;DR: In this paper, the spectral broadening and transfer of topological charge (TC) into emerging spectral satellites take place due to self-phase modulation and degenerate four-wave frequency mixing (FWFM).
Abstract: In this work we report detailed experimental and numerical investigation of the white light generation by singly and doubly charged optical vortices propagating in a Kerr medium, where spectral broadening and transfer of topological charge (TC) into emerging spectral satellites take place due to self-phase modulation and degenerate four-wave frequency mixing (FWFM). Experiments performed with different pump beams show excellent agreement with theory. Singly and doubly charged white light vortices are observed within more than ±200 nm bandwidth after nonlinear propagation in Argon gas. Our experiment and theory data confirm that the TC transformation of the newly generated spectral components follows a law analogous to the one for energy conservation in the FWFM process. We also present results on the white light vortex stability.

Journal ArticleDOI
TL;DR: The results indicate that spectral broadening effects are not properly described by theory, especially at pressure levels exceeding 20 bar, which culminates in a clear underestimation of the derived pressure data by SC absorption spectroscopy.
Abstract: A broadband supercontinuum (SC) based absorption spectrometer capable of cycle-resolved multiparameter measurements at internal combustion (IC) engine conditions is presented. Three parameters, temperature, pressure and water mole fraction, were extracted from broadband near-infrared H2O absorption spectra, spanning the wavelength-range from 1340 to 1405.5 nm, which exhibits a large number of specific H2O transitions. The spectrometer is based on spatial domain detection and features a near-infrared line scan camera as a detector. Measurements were performed during a compression cycle of a rapid compression machine comprising a pressure and temperature range from 2.5 to 65 bar and 300 to 900 K, respectively. With the new spectrometer, we are for the first time, based on the authors’ knowledge, able to perform measurements based on SC radiation over a complete compression and expansion stroke at measurement rates up to 50 kHz. A detailed overview is provided about the best match algorithm between theory and experiments, including parameters from two different spectral databases, namely the Barber-Tennyson database (BT2) and HITRAN2012. The results indicate that spectral broadening effects are not properly described by theory, especially at pressure levels exceeding 20 bar, which culminates in a clear underestimation of the derived pressure data by SC absorption spectroscopy. Nevertheless, temperature can be determined accurately by performing a three-parameter fit based on water mole fraction, temperature, and pressure. In contrast, making use of pressure transducer data as look-up values and varying only temperature and H2O mole fraction to find the best match leads to a clear overestimation of temperature at elevated pressures.

Journal ArticleDOI
TL;DR: Copper plasma generated at different filament-copper interaction points was characterized by spectroscopic, acoustic, and imaging measurements, and the longitudinal variation of the filament intensity was qualitatively determined by acoustic measurements in air.
Abstract: Copper plasma generated at different filament-copper interaction points was characterized by spectroscopic, acoustic, and imaging measurements. The longitudinal variation of the filament intensity was qualitatively determined by acoustic measurements in air. The maximum plasma temperature was measured at the location of peak filament intensity, corresponding to the maximum mean electron energy during plasma formation. The highest copper plasma density was measured past the location of the maximum electron density in the filament, where spectral broadening of the filament leads to enhanced ionization. Acoustic measurements in air and on solid target were correlated to reconstructed plasma properties. Optimal line emission is measured near the geometric focus of the lens used to produce the filament.