scispace - formally typeset
Search or ask a question
Topic

Doppler broadening

About: Doppler broadening is a research topic. Over the lifetime, 5509 publications have been published within this topic receiving 92552 citations.


Papers
More filters
Proceedings ArticleDOI
TL;DR: The angular resolution of a telescope which detects gamma-rays via the Compton effect is fundamentally limited below a few hundred keV by the fact that the target electrons have an indeterminable momentum inside their atoms which introduces an uncertainty in the recoil energy of the Compton electron and the scattered photon as mentioned in this paper.
Abstract: The angular resolution of a telescope which detects gamma-rays via the Compton effect is fundamentally limited below a few hundred keV by the fact that the target electrons have an indeterminable momentum inside their atoms which introduces an uncertainty in the recoil energy of the Compton electron and the scattered photon. This additional component in the energy and momentum equation results in a Doppler broadening of the angular resolution compared to the standard Compton equation for a target at rest. The deterioration in resolution is most pronounced for low photon energy, high scatter angle, and high Z of the scatter material. This physical limit to the angular resolution of a Compton telescope is present even if all other parameters (e.g. energy and position) are measured with high accuracy. For different Compton scatter materials such as silicon, germanium and xenon, which are used in current telescope designs, the best possible angular resolution as a function of photon energy and scatter angle is calculated. Averaged over all scatter angles and energies, the Doppler-limited angular resolution of silicon is a factor of ~1.6 better than that of germanium and a factor of ~1.9 better than that of xenon. Looking at the Doppler limit of materials from Z=1 to 90 the best angular resolution can be reached for alkaline and alkaline earth metals, the worst for elements with filled p-orbitals (noble gases) and d-orbitals (e.g. Pd and Au). Of all semiconductors which might be used in a next generation Compton telescope, silicon seems to be the best choice.

123 citations

Journal ArticleDOI
TL;DR: In this paper, direct confirmation of the Doppler effect at the infrared wavelength of 10.6 µm using a moving photonic crystal exhibiting a negative refractive index has been reported.
Abstract: Experimental investigation of the reverse-Doppler shift of electromagnetic waves has previously been restricted to the microwave regime. Here, direct confirmation of the Doppler effect is reported at the infrared wavelength of 10.6 µm using a moving photonic crystal exhibiting a negative refractive index.

123 citations

Journal ArticleDOI
TL;DR: In this article, the expansion velocities of ejecta in Tycho's supernova remnant (SNR) are consistent with a spherically symmetric shell, based on Suzaku measurements of the Doppler broadened X-ray emission lines.
Abstract: We show that the expansion of ejecta in Tycho's supernova remnant (SNR) is consistent with a spherically symmetric shell, based on Suzaku measurements of the Doppler broadened X-ray emission lines. All of the strong Kα line emissions show broader widths at the center than at the rim, while the centroid energies are constant across the remnant (except for Ca). This is the pattern expected for Doppler broadening due to expansion of the SNR ejecta in a spherical shell. To determine the expansion velocities of the ejecta, we applied a model for each emission-line feature having two Gaussian components separately representing red- and blueshifted gas, and inferred the Doppler velocity difference between these two components directly from the fitted centroid energy difference. Taking into account the effect of projecting a three-dimensional shell to the plane of the detector, we derived average spherical expansion velocities independently for the Kα emission of Si, S, Ar, and Fe, and Kβ of Si. We found that the expansion velocities of Si, S, and Ar ejecta of 4700 ± 100 km s–1 are distinctly higher than that obtained from Fe Kα emission, 4000 ± 300 km s–1, which is consistent with segregation of the Fe in the inner ejecta. Combining the observed ejecta velocities with the ejecta proper-motion measurements by Chandra, we derived a distance to Tycho's SNR of 4 ± 1 kpc.

122 citations

Journal ArticleDOI
TL;DR: In this article, transient optical absorption spectroscopy has been used for the first time to study the transport of ground state Y, Ba, Cu, and Ba+ following excimer laser ablation of Y1Ba2Cu3O7−x pellets.
Abstract: Transient optical absorption spectroscopy has been utilized for the first time to study the transport of ground‐state Y, Ba, Cu, and Ba+ following excimer laser ablation of Y1Ba2Cu3O7−x pellets. Spectral broadening of the atomic lines monitored in both absorption and emission is reported, indicating the existence of gas phase collisions in the plume of ejected material. Time‐of‐flight velocity distributions of the nonemitting neutrals and ions determined by the absorption technique are broadened and shifted to lower velocities than the velocity distributions inferred from excited‐state fluorescence in the plume. Absorption by ground‐state Y+, YO, BaO, and CuO also has been observed with this technique. The absorption technique, and its application as an in situ monitor of neutral and ion transport during deposition of superconducting thin films, is described.

122 citations

Journal ArticleDOI
TL;DR: In this article, the authors numerically optimize the cw (continuous wave) laser format, in particular, the light polarization and spectrum, and show that the return flux can be boosted by repumping (simultaneous excitation of the sodium D2 aa nd D 2b lines with 10−20% of the laser power in the latter).
Abstract: Context. Sodium laser guide stars (LGS) are about to enter a new range of laser powers. Previous theoretical and numerical methods are inadequate for accurate computations of the return flux, hence for the design of the next-generation LGS systems. Aims. We numerically optimize the cw (continuous wave) laser format, in particular, the light polarization and spectrum. Methods. Using Bloch equations, we simulate the mesospheric sodium atoms, including Doppler broadening, saturation, collisional relaxation, Larmor precession, and recoil, taking all 24 sodium hyperfine states into account and 100–300 velocity groups. Results. LGS return flux is limited by “three evils”: Larmor precession due to the geomagnetic field, atomic recoil due to radiation pressure, and transition saturation. We study their impact and show that the return flux can be boosted by repumping (simultaneous excitation of the sodium D2 aa nd D 2b lines with 10−20% of the laser power in the latter). Conclusions. We strongly recommend the use of circularly polarized lasers and repumping. As a rule of thumb, the bandwidth of laser radiation in MHz (at each line) should approximately equal the launched laser power in Watts divided by six, assuming a diffraction-limited spot size.

121 citations


Network Information
Related Topics (5)
Scattering
152.3K papers, 3M citations
84% related
Excited state
102.2K papers, 2.2M citations
84% related
Laser
353.1K papers, 4.3M citations
83% related
Magnetic field
167.5K papers, 2.3M citations
82% related
Silicon
196K papers, 3M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202331
202290
2021122
2020134
2019128
2018122