scispace - formally typeset
Search or ask a question
Topic

Dosage compensation

About: Dosage compensation is a research topic. Over the lifetime, 1920 publications have been published within this topic receiving 124589 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This review emphasizes the opportunity that Xist provides to functionally define epigenetic transitions in development, to understand cell identity, pluripotency and stem cell differentiation.

69 citations

Journal ArticleDOI
TL;DR: The finding that P. interpunctella lacks complete Z chromosome dosage compensation suggests that the Lepidoptera and possibly all female heterogametic taxa lack global dosage compensation, although more species will need to be sampled to confirm this assertion.
Abstract: Males and females experience differences in gene dose for loci in the nonrecombining region of heteromorphic sex chromosomes. If not compensated, this leads to expression imbalances, with the homogametic sex on average exhibiting greater expression due to the doubled gene dose. Many organisms with heteromorphic sex chromosomes display global dosage compensation mechanisms, which equalize gene expression levels between the sexes. However, birds and Schistosoma have been previously shown to lack chromosome-wide dosage compensation mechanisms, and the status in other female heterogametic taxa including Lepidoptera remains unresolved. To further our understanding of dosage compensation in female heterogametic taxa and to resolve its status in the lepidopterans, we assessed the Indian meal moth, Plodia interpunctella. As P. interpunctella lacks a complete reference genome, we conducted de novo transcriptome assembly combined with orthologous genomic location prediction from the related silkworm genome, Bombyx mori, to compare Z-linked and autosomal gene expression levels for each sex. We demonstrate that P. interpunctella lacks complete Z chromosome dosage compensation, female Z-linked genes having just over half the expression level of males and autosomal genes. This finding suggests that the Lepidoptera and possibly all female heterogametic taxa lack global dosage compensation, although more species will need to be sampled to confirm this assertion.

69 citations

Journal ArticleDOI
TL;DR: It is shown that ectopic production of siRNA from a repetitive sequence that is limited to the X chromosome also promotes X recognition, suggesting a control region model, in which siRNA produced by a few repeats acts on widely distributed X-linked target sequences to promote selective recognition, and modification, of a single chromosome.
Abstract: Highly differentiated sex chromosomes create a lethal imbalance in gene expression in one sex. To accommodate hemizygosity of the X chromosome in male fruit flies, expression of X-linked genes increases twofold. This is achieved by the male- specific lethal (MSL) complex, which modifies chromatin to increase expression. Mutations that disrupt the X localization of this complex decrease the expression of X-linked genes and reduce male survival. The mechanism that restricts the MSL complex to X chromatin is not understood. We recently reported that the siRNA pathway contributes to localization of the MSL complex, raising questions about the source of the siRNAs involved. The X-linked 1.688 g/cm3 satellite related repeats (1.688X repeats) are restricted to the X chromosome and produce small RNA, making them an attractive candidate. We tested RNA from these repeats for a role in dosage compensation and found that ectopic expression of single-stranded RNAs from 1.688X repeats enhanced the male lethality of mutants with defective X recognition. In contrast, expression of double-stranded hairpin RNA from a 1.688X repeat generated abundant siRNA and dramatically increased male survival. Consistent with improved survival, X localization of the MSL complex was largely restored in these males. The striking distribution of 1.688X repeats, which are nearly exclusive to the X chromosome, suggests that these are cis-acting elements contributing to identification of X chromatin.

68 citations

Journal ArticleDOI
TL;DR: Comparative gene mapping and whole genome sequencing have now turned up other surprising relationships; different regions of the amniote genome that have become sex determining in some taxa seem to share synteny, or share sequence, in others.
Abstract: The diversity of sex chromosomes among amniotes is the product of independent evolution of different systems in different lineages, defined by novel sex-determining genes. Convergent evolution is very common, suggesting that some genes are particularly adept at taking on a sex-determining role. Comparative gene mapping, and more recently whole genome sequencing, have now turned up other surprising relationships; different regions of the amniote genome that have become sex determining in some taxa seem to share synteny, or share sequence, in others. Is this, after all, evidence that these regions were once linked in a super-sex chromosome that underwent multiple fission in different ways in different amniote lineages? Or does it signify that special properties of sex chromosomes (paucity of active genes, low recombination, epigenetic regulation to achieve dosage compensation) predispose particular chromosomes to a sex-determining role?

68 citations

Journal ArticleDOI
TL;DR: It is proposed that the sex-independent, three-dimensional conformation of the X chromosome poises it for exploitation by the MSL complex, thereby facilitating spreading in males.

68 citations


Network Information
Related Topics (5)
Chromatin
50.7K papers, 2.7M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Gene
211.7K papers, 10.3M citations
87% related
Mutation
45.2K papers, 2.6M citations
86% related
Genome
74.2K papers, 3.8M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202330
202272
202183
202051
201980
201870