scispace - formally typeset
Search or ask a question
Topic

Dosage compensation

About: Dosage compensation is a research topic. Over the lifetime, 1920 publications have been published within this topic receiving 124589 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Evidence is emerging, from studies of both humans and mice, for a general influence upon intelligence and relatively specific effects of X-linked genes on social-cognition and emotional regulation, and surprising specificity of effects has been described in both species.
Abstract: The X-chromosome has played a crucial role in the development of sexually selected characteristics for over 300 million years. During that time it has accumulated a disproportionate number of genes concerned with mental functions. Evidence is emerging, from studies of both humans and mice, for a general influence upon intelligence (as indicated by the large number of X-linked mental retardation syndromes). In addition, there is evidence for relatively specific effects of X-linked genes on social-cognition and emotional regulation. Sexually dimorphic processes could be influenced by several mechanisms. First, a small number of X-linked genes are apparently expressed differently in male and female brains in mouse models. Secondly, many human X-linked genes outside the X-Y pairing pseudoautosomal regions escape X-inactivation. Dosage differences in the expression of such genes (which might comprise at least 20% of the total) are likely to play an important role in male-female neural differentiation. To date, little is known about the process but clues can be gleaned from the study of X-monosomic females who are haploinsufficient for expression of all non-inactivated genes relative to 46,XX females. Finally, from studies of both X-monosomic humans (45,X) and mice (39,X), we are learning more about the influences of X-linked imprinted genes upon brain structure and function. Surprising specificity of effects has been described in both species, and identification of candidate genes cannot now be far off.

215 citations

Journal ArticleDOI
TL;DR: The results confirm the predictions of the model in that when the inactivation centre is deleted from one of the X-chromosomes neither X present in a diploid cell can be inactivated, and in addition considerably further localize the position of the in activation centre on theX- chromosome.
Abstract: The predictions of a model for the initiation of X-chromosome inactivation based on a single inactivation centre were tested in a cytogenetic study using six different embryo-derived (EK) stem cell lines, each with a different-sized deletion of the distal part of one of the X-chromosomes. Metaphase chromosomes were prepared by the Kanda method from each cell line in the undifferentiated state and after induction of differentiation, and cytogenetic evidence sought for a dark-staining inactive X-chromosome. The results confirm the predictions of the model in that when the inactivation centre is deleted from one of the X-chromosomes neither X present in a diploid cell can be inactivated, and in addition considerably further localize the position of the inactivation centre on the X-chromosome.

213 citations

Journal ArticleDOI
TL;DR: The categorization of genes that escape from X inactivation provides candidates for sex-specific differences in disease and a model of predominately cis-acting influences on inactivation status was supported.
Abstract: X-chromosome inactivation (XCI) achieves dosage compensation between males and females through the silencing of the majority of genes on one of the female X chromosomes. Thus, the female X chromosomes provide a unique opportunity to study euchromatin and heterochromatin of allelic regions within the same nuclear environment. We examined the interplay of DNA methylation (DNAm) with CpG density, transcriptional activity and chromatin state at genes on the X chromosome using over 1800 female samples analysed with the Illumina Infinium Human Methylation450 BeadChip. DNAm was used to predict an inactivation status for 63 novel transcription start sites (TSSs) across 27 tissues. There was high concordance of inactivation status across tissues, with 62% of TSSs subject to XCI in all 27 tissues examined, whereas 9% escaped from XCI in all tissues, and the remainder showed variable escape from XCI between females in subsets of tissues. Inter-female and twin data supported a model of predominately cis-acting influences on inactivation status. The level of expression from the inactive X relative to the active X correlated with the amount of female promoter DNAm to a threshold of ∼30%, beyond which genes were consistently subject to inactivation. The inactive X showed lower DNAm than the active X at intragenic and intergenic regions for genes subject to XCI, but not at genes that escape from inactivation. Our categorization of genes that escape from X inactivation provides candidates for sex-specific differences in disease.

213 citations

Journal ArticleDOI
TL;DR: Mmany genes from the X chromosome are expressed at the same level in female and male embryos during early Drosophila development, prior to the establishment of MSL-mediated dosage compensation, suggesting the existence of a novel mechanism.
Abstract: When Drosophila melanogaster embryos initiate zygotic transcription around mitotic cycle 10, the dose-sensitive expression of specialized genes on the X chromosome triggers a sex-determination cascade that, among other things, compensates for differences in sex chromosome dose by hypertranscribing the single X chromosome in males. However, there is an approximately 1 hour delay between the onset of zygotic transcription and the establishment of canonical dosage compensation near the end of mitotic cycle 14. During this time, zygotic transcription drives segmentation, cellularization, and other important developmental events. Since many of the genes involved in these processes are on the X chromosome, we wondered whether they are transcribed at higher levels in females and whether this might lead to sex-specific early embryonic patterning. To investigate this possibility, we developed methods to precisely stage, sex, and characterize the transcriptomes of individual embryos. We measured genome-wide mRNA abundance in male and female embryos at eight timepoints, spanning mitotic cycle 10 through late cycle 14, using polymorphisms between parental lines to distinguish maternal and zygotic transcription. We found limited sex-specific zygotic transcription, with a weak tendency for genes on the X to be expressed at higher levels in females. However, transcripts derived from the single X chromosome in males were more abundant that those derived from either X chromosome in females, demonstrating that there is widespread dosage compensation prior to the activation of the canonical MSL-mediated dosage compensation system. Crucially, this new system of early zygotic dosage compensation results in nearly identical transcript levels for key X-linked developmental regulators, including giant (gt), brinker (brk), buttonhead (btd), and short gastrulation (sog), in male and female embryos.

211 citations

Journal ArticleDOI
TL;DR: This review considers each of these three questions in turn to address fundamental questions in the field, summarize the current understanding, and highlight important areas for future work.
Abstract: Sex chromosomes can evolve once recombination is halted between a homologous pair of chromosomes. Owing to detailed studies using key model systems, we have a nuanced understanding and a rich review literature of what happens to sex chromosomes once recombination is arrested. However, three broad questions remain unanswered. First, why do sex chromosomes stop recombining in the first place? Second, how is recombination halted? Finally, why does the spread of recombination suppression, and therefore the rate of sex chromosome divergence, vary so substantially across clades? In this review, we consider each of these three questions in turn to address fundamental questions in the field, summarize our current understanding, and highlight important areas for future work.

210 citations


Network Information
Related Topics (5)
Chromatin
50.7K papers, 2.7M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Gene
211.7K papers, 10.3M citations
87% related
Mutation
45.2K papers, 2.6M citations
86% related
Genome
74.2K papers, 3.8M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202330
202272
202183
202051
201980
201870