scispace - formally typeset
Search or ask a question
Topic

Dosage compensation

About: Dosage compensation is a research topic. Over the lifetime, 1920 publications have been published within this topic receiving 124589 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A new study reveals multiple dramatic changes in sex chromosome structure and identity in flies; such transitions are accompanied by a series of genomic events that affect chromosome biology, gene regulation, and sex determination.
Abstract: A new study reveals multiple dramatic changes in sex chromosome structure and identity in flies; such transitions are accompanied by a series of genomic events that affect chromosome biology, gene regulation, and sex determination. See the accompanying Research Article.

7 citations

Journal ArticleDOI
TL;DR: New statistical methods for rare X‐linked variant genetic association analysis of dichotomous phenotypes with family‐based samples are proposed that are computationally efficient and can complete X‐ linked analyses within a few hours.
Abstract: Although the X chromosome has many genes that are functionally related to human diseases, the complicated biological properties of the X chromosome have prevented efficient genetic association analyses, and only a few significantly associated X-linked variants have been reported for complex traits. For instance, dosage compensation of X-linked genes is often achieved via the inactivation of one allele in each X-linked variant in females; however, some X-linked variants can escape this X chromosome inactivation. Efficient genetic analyses cannot be conducted without prior knowledge about the gene expression process of X-linked variants, and misspecified information can lead to power loss. In this report, we propose new statistical methods for rare X-linked variant genetic association analysis of dichotomous phenotypes with family-based samples. The proposed methods are computationally efficient and can complete X-linked analyses within a few hours. Simulation studies demonstrate the statistical efficiency of the proposed methods, which were then applied to rare-variant association analysis of the X chromosome in chronic obstructive pulmonary disease. Some promising significant X-linked genes were identified, illustrating the practical importance of the proposed methods.

7 citations

Journal ArticleDOI
TL;DR: The late replication of the Xi does not depend on the compactness of chromosome territory in human PSCs, but the Xi reactivation and the synchronization in the replication timing of X chromosomes upon reprogramming are necessarily accompanied by the expansion of X chromosome territory.
Abstract: Dosage compensation of the X chromosomes in mammals is performed via the formation of facultative heterochromatin on extra X chromosomes in female somatic cells. Facultative heterochromatin of the inactivated X (Xi), as well as constitutive heterochromatin, replicates late during the S-phase. It is generally accepted that Xi is always more compact in the interphase nucleus. The dense chromosomal folding has been proposed to define the late replication of Xi. In contrast to mouse pluripotent stem cells (PSCs), the status of X chromosome inactivation in human PSCs may vary significantly. Fluorescence in situ hybridization with a whole X-chromosome-specific DNA probe revealed that late-replicating Xi may occupy either compact or dispersed territory in human PSCs. Thus, the late replication of the Xi does not depend on the compactness of chromosome territory in human PSCs. However, the Xi reactivation and the synchronization in the replication timing of X chromosomes upon reprogramming are necessarily accompanied by the expansion of X chromosome territory.

7 citations

Posted ContentDOI
01 Aug 2018-bioRxiv
TL;DR: Studying the effect of sex differences during human embryogenesis, as well as understanding the mechanism of X chromosome inactivation and its correlation with early miscarriage, will provide a basis for advancing assisted reproductive technology (ART) and thereby improve the treatment of infertility and possibly enhance reproductive health.
Abstract: Background: Several animal and human studies have demonstrated that sex affects kinetics and metabolism during early embryo development. However, the mechanism governing these differences at the molecular level is unknown, warranting a systematic profiling of gene expression in males and females during embryogenesis. Findings: We performed comprehensive analyses of gene expression comparing male and female embryos using available single-cell RNA-sequencing data of 1607 individual cells from 99 human preimplantation embryos, covering development stages from 4-cell to late blastocyst (E2 to E7). Consistent chromosome-wide transcription of autosomes was observed, while sex chromosomes showed significant differences after embryonic genome activation (EGA). Differentially expressed genes (DE genes) in male and female embryos mainly involved in the cell cycle, protein translation and metabolism. The Y chromosome was initially activated by pioneer genes, RPS4Y1 and DDX3Y, while the two X chromosomes in female were widely activated after EGA. Expression of X-linked genes in female significantly declined at the late blastocyst stage, especially in trophectoderm cells, revealing a rapid process of dosage compensation. Conclusions: We observed imbalanced expression from sex chromosomes in male and female embryos during EGA, with dosage compensation occurring first in female trophectoderm cells. Studying the effect of sex differences during human embryogenesis, as well as understanding the mechanism of X chromosome inactivation and its correlation with early miscarriage, will provide a basis for advancing assisted reproductive technology (ART) and thereby improve the treatment of infertility and possibly enhance reproductive health. Key words: single-cell RNA-seq, embryogenesis, sex differences, dosage compensation

7 citations

Journal ArticleDOI
TL;DR: Analysis of sex-transformed flies indicates that X expression variability is independent of the male differentiation program, and a correlation between occupancy of the chromatin-modifying protein encoded by males absent on the first and expression variability, linking noise suppression to the specialized X chromosome dosage compensation system is uncovered.
Abstract: DNA copy number variation is associated with many high phenotypic heterogeneity disorders. We systematically examined the impact of Drosophila melanogaster deletions on gene expression profiles to ask whether increased expression variability owing to reduced gene dose might underlie this phenotypic heterogeneity. Indeed, we found that one-dose genes have higher gene expression variability relative to two-dose genes. We then asked whether this increase in variability could be explained by intrinsic noise within cells due to stochastic biochemical events, or whether expression variability is due to extrinsic noise arising from more complex interactions. Our modeling showed that intrinsic gene expression noise averages at the organism level and thus cannot explain increased variation in one-dose gene expression. Interestingly, expression variability was related to the magnitude of expression compensation, suggesting that regulation, induced by gene dose reduction, is noisy. In a remarkable exception to this rule, the single X chromosome of males showed reduced expression variability, even compared with two-dose genes. Analysis of sex-transformed flies indicates that X expression variability is independent of the male differentiation program. Instead, we uncovered a correlation between occupancy of the chromatin-modifying protein encoded by males absent on the first (mof) and expression variability, linking noise suppression to the specialized X chromosome dosage compensation system. MOF occupancy on autosomes in both sexes also lowered transcriptional noise. Our results demonstrate that gene dose reduction can lead to heterogeneous responses, which are often noisy. This has implications for understanding gene network regulatory interactions and phenotypic heterogeneity. Additionally, chromatin modification appears to play a role in dampening transcriptional noise.

7 citations


Network Information
Related Topics (5)
Chromatin
50.7K papers, 2.7M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Gene
211.7K papers, 10.3M citations
87% related
Mutation
45.2K papers, 2.6M citations
86% related
Genome
74.2K papers, 3.8M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202330
202272
202183
202051
201980
201870