scispace - formally typeset
Search or ask a question
Topic

Dosage compensation

About: Dosage compensation is a research topic. Over the lifetime, 1920 publications have been published within this topic receiving 124589 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The role of lncRNAs in processes vital to reproduction, such as germ cell specification, sex determination and gonadogenesis, sex hormone responses, meiosis, gametogenesis, placentation, non‐genetic inheritance, and pathologies affecting reproductive tissues are reviewed.
Abstract: Noncoding RNAs (ncRNAs) have long been known to play vital roles in eukaryotic gene regulation. Studies conducted over a decade ago revealed that maturation of spliced, polyadenylated coding mRNA occurs by reactions involving small nuclear RNAs and small nucleolar RNAs; mRNA translation depends on activities mediated by transfer RNAs and ribosomal RNAs, subject to negative regulation by micro RNAs; transcriptional competence of sex chromosomes and some imprinted genes is regulated in cis by ncRNAs that vary by species; and both small-interfering RNAs and piwi-interacting RNAs bound to Argonaute-family proteins regulate post-translational modifications on chromatin and local gene expression states. More recently, gene-regulating noncoding RNAs have been identified, such as long intergenic and long noncoding RNAs (collectively referred to as lncRNAs)--a class totaling more than 100,000 transcripts in humans, which include some of the previously mentioned RNAs that regulate dosage compensation and imprinted gene expression. Here, we provide an overview of lncRNA activities, and then review the role of lncRNAs in processes vital to reproduction, such as germ cell specification, sex determination and gonadogenesis, sex hormone responses, meiosis, gametogenesis, placentation, non-genetic inheritance, and pathologies affecting reproductive tissues. Results from many species are presented to illustrate the evolutionarily conserved processes lncRNAs are involved in.

137 citations

Journal ArticleDOI
TL;DR: Study of these exceptions to the rule of silencing highlights the interconnectedness of chromatin and chromosome structure in X-chromosome inactivation (XCI).

135 citations

Journal ArticleDOI
TL;DR: Genetic biology should be considered for any disease or phenotype that occurs in one sex more than the other, because the disease mechanism may be influenced directly by an X-linked gene or indirectly through the consequences of X inactivation.

135 citations

Journal ArticleDOI
12 Jul 2012-Nature
TL;DR: Using the marsupial Monodelphis domestica, Rsx (RNA-on-the-silent X), an RNA is identified that has properties consistent with a role in X-chromosome inactivation, and is found to be a large, repeat-rich RNA that is expressed only in females and is transcribed from, and coats, the inactive X chromosome.
Abstract: In female (XX) mammals, one of the two X chromosomes is inactivated to ensure an equal dose of X-linked genes with males (XY). X-chromosome inactivation in eutherian mammals is mediated by the non-coding RNA Xist. Xist is not found in metatherians (marsupials), and how X-chromosome inactivation is initiated in these mammals has been the subject of speculation for decades. Using the marsupial Monodelphis domestica, here we identify Rsx (RNA-on-the-silent X), an RNA that has properties consistent with a role in X-chromosome inactivation. Rsx is a large, repeat-rich RNA that is expressed only in females and is transcribed from, and coats, the inactive X chromosome. In female germ cells, in which both X chromosomes are active, Rsx is silenced, linking Rsx expression to X-chromosome inactivation and reactivation. Integration of an Rsx transgene on an autosome in mouse embryonic stem cells leads to gene silencing in cis. Our findings permit comparative studies of X-chromosome inactivation in mammals and pose questions about the mechanisms by which X-chromosome inactivation is achieved in eutherians.

135 citations

Journal ArticleDOI
TL;DR: The differentiation of a particular X-chromosome as active or inactive is initiated in early embryogeny, and thereafter maintained through all further cell divisions in that individual, of great interest in relation to genetic control mechanisms in general.
Abstract: The X-chromosome of mammals is remarkable for its variable genetic activity. In somatic cells only a single X-chromosome is active, no matter how many are present, thus providing a dosage compensation mechanism by which males and females effectively have the same gene dosage of X-linked genes. In germ cells, however, it appears that all X-chromosomes present are active. Female germ cells require the presence of two X-chromosomes for normal survival, whereas male germ cells die if they have more than one X-chromosome. This system is found in all eutherian mammals and in marsupials, but is not known in any other animal group. In marsupials the X-chromosome derived from the father seems to be preferentially inactivated, whereas in eutherian mammals that from either parent may be so in different cells of the same animal. The differentiation of a particular X-chromosome as active or inactive is initiated in early embryogeny, and thereafter maintained through all further cell divisions in that individual. The mechanisms by which this is achieved are of great interest in relation to genetic control mechanisms in general. Various recent hypotheses concerning these mechanisms are discussed.

135 citations


Network Information
Related Topics (5)
Chromatin
50.7K papers, 2.7M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Gene
211.7K papers, 10.3M citations
87% related
Mutation
45.2K papers, 2.6M citations
86% related
Genome
74.2K papers, 3.8M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202330
202272
202183
202051
201980
201870