scispace - formally typeset
Search or ask a question
Topic

Dosage compensation

About: Dosage compensation is a research topic. Over the lifetime, 1920 publications have been published within this topic receiving 124589 citations.


Papers
More filters
Journal ArticleDOI
13 Feb 1987-Cell
TL;DR: The role of da+ in Drosophila development is clarified, finding that this sex determination gene is indeed pleiotropic and zygotic functioning of da- is essential in both sexes for somatic cell development, but not for germ cell development.

94 citations

Journal ArticleDOI
TL;DR: It is found that the scute (T4) gene, which is involved in neurogenesis, also plays a role in the activation of Sxl, and the following results suggest that scute may be a numerator element of the X:A signal.
Abstract: The ratio of X chromosomes to sets of autosomes (X:A) is the primary genetic signal that determines sex and dosage compensation in Drosophila. The gene Sex-lethal (Sxl) receives this signal and is responsible for the execution of the alternative developmental programmes of males and females. We have found that the scute (T4) gene, which is involved in neurogenesis, also plays a role in the activation of Sxl. The following results suggest that scute (T4) may be a numerator element of the X:A signal: scute (T4) mutations show female-specific lethality. There are female-specific lethal synergistic interactions between sis-a, a previously described numerator element, and mutants for T4. The female lethality is suppressed by SxlM1, a constitutive allele which expresses an active Sxl product independently of the X:A ratio. The Hw685 mutation, which overexpresses T4, is lethal to males with a duplication of sis-a. This lethality is suppressed by either Sxlf1, or the T4 point mutation sc10-1. There are female-specific lethal interactions between sc10-1 and daughter-less (da), a gene needed maternally for Sxl to become active. The sc10-1 mutation masculinizes triploid intersexes.

94 citations

Journal ArticleDOI
TL;DR: A family of putative ATPases that play a fundamental role in chromosome condensation and segregation in mitosis was found, providing a new link between global regulation of gene expression and chromosome structure.

93 citations

Journal ArticleDOI
TL;DR: It is shown here that the X‐chromosomal gene liz, located in 4F1 to 4F11 and previously called fs(1)1621, provides maternal and zygotic functions necessary for Sxl activity in germ line and soma.
Abstract: In Drosophila, females require products of the gene Sxl for sex determination, dosage compensation and fertility. I show here that the X-chromosomal gene liz, located in 4F1 to 4F11 and previously called fs(1)1621, provides maternal and zygotic functions necessary for Sxl activity in germ line and soma. In XX animals, the mutation SxlM1 which was reported to express the female-specific functions of Sxl constitutively can rescue all phenotypes resulting from lack of liz product. XY animals carrying SxlM1 and lacking maternal or zygotic liz activity survive as males with some female traits. A stock was constructed in which the females are liz SxlM1/liz SxlM1 and males liz SxlM1/Y. This shows that SxlM1 is not truly expressed constitutively in animals with an X:A ratio of 0.5, but requires activity of liz for initiation or maintenance.

93 citations

Journal ArticleDOI
TL;DR: An accelerated shortening of telomeric repeats in the inactive X chromosome is observed, which suggests that epigenetic factors modulate not only the length but also the rate of age-associated telomere shortening in human cells in vivo.
Abstract: Telomeres are nucleoprotein complexes at the end of eukaryotic chromosomes, with important roles in the maintenance of genomic stability and in chromosome segregation. Normal somatic cells lose telomeric repeats with each cell division both in vivo and in vitro. To address a potential role of nuclear architecture and epigenetic factors in telomere-length dynamics, the length of the telomeres of the X chromosomes and the autosomes was measured in metaphases from blood lymphocytes of human females of various ages, by quantitative FISH with a peptide nucleic-acid telomeric probe in combination with an X-chromosome centromere-specific probe. The activation status of the X chromosomes was simultaneously visualized with antibodies against acetylated histone H4. We observed an accelerated shortening of telomeric repeats in the inactive X chromosome, which suggests that epigenetic factors modulate not only the length but also the rate of age-associated telomere shortening in human cells in vivo. This is the first evidence to show a differential rate of telomere shortening between and within homologous chromosomes in any species. Our results are also consistent with a causative role of telomere shortening in the well-documented X-chromosome aneuploidy in aging humans.

93 citations


Network Information
Related Topics (5)
Chromatin
50.7K papers, 2.7M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Gene
211.7K papers, 10.3M citations
87% related
Mutation
45.2K papers, 2.6M citations
86% related
Genome
74.2K papers, 3.8M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202330
202272
202183
202051
201980
201870