scispace - formally typeset
Search or ask a question

Showing papers on "Doxorubicin published in 2011"


Journal ArticleDOI
TL;DR: A brief background on the literature supporting the PharmGKB pathway about doxorubicin action, and a summary of this active area of research can be found in this paper.
Abstract: The goal of this study is to give a brief background on the literature supporting the PharmGKB pathway about doxorubicin action, and provides a summary of this active area of research. The reader is referred to recent in-depth reviews [1–4] for more detailed discussion of this important and complex pathway. Doxorubicin is an anthracyline drug first extracted from Streptomyces peucetius var. caesius in the 1970’s and routinely used in the treatment of several cancers including breast, lung, gastric, ovarian, thyroid, non-Hodgkin’s and Hodgkin’s lymphoma, multiple myeloma, sarcoma, and pediatric cancers [5–7]. A major limitation for the use of doxorubicin is cardiotoxicity, with the total cumulative dose being the only criteria currently used to predict the toxicity [4,8]. As there is evidence that the mechanisms of anticancer action and of cardiotoxicity occur through different pathways there is hope for the development of anthracycline drugs with equal efficacy but reduced toxicity [4]. Knowledge of the pharmacogenomics of these pathways may eventually allow for future selection of patients more likely to achieve efficacy at lower doses or able to withstand higher doses with lesser toxicity. We present here graphical representations of the candidate genes for the pharmacogenomics of doxorubicin action in a stylized cancer cell (Fig. 1) and toxicity in cardiomyocytes (Fig. 2), and a table describing the key variants examined so far. Open in a separate window Fig. 1 Graphical representation of the candidate genes involved in the pharmacodynamics of doxorubicin in a stylized cancer cell. A fully interactive version of this pathway is available online at PharmGKB at http://www.pharmgkb.org/do/serve?objId=PA165292163o ROS, reactive oxygen species.

1,168 citations


Journal ArticleDOI
12 Apr 2011-ACS Nano
TL;DR: DOX-Hyd@AuNPs represents a model with dual roles in overcoming MDR in cancer cells and probing the intracellular release of drug from its delivery system.
Abstract: Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. Through the development of a drug delivery system that tethers doxorubicin onto the surface of gold nanoparticles with a poly(ethylene glycol) spacer via an acid-labile linkage (DOX-Hyd@AuNPs), we have demonstrated that multidrug resistance in cancer cells can be significantly overcome by a combination of highly efficient cellular entry and a responsive intracellular release of doxorubicin from the gold nanoparticles in acidic organelles. DOX-Hyd@AuNPs achieved enhanced drug accumulation and retention in multidrug resistant MCF-7/ADR cancer cells when it was compared with free doxorubicin. It released doxorubicin in response to the pH of acidic organelles following endocytosis, opposite to the noneffective drug release from doxorubicin-tethered gold nanoparticles via the carbamate linkage (DOX-Cbm@AuNPs), which was shown by the recovered fluorescence of doxorubicin from quenching due to the nanosurface energy transfer ...

718 citations


Journal ArticleDOI
18 Feb 2011-Small
TL;DR: It is demonstrated that the PEI-GO is an excellent nanocarrier for effective delivery of siRNA and chemical drugs, and that sequential delivery of the siRNAs and the anticancer drug doxorubicin by PEi-GO into cancer cells exhibits a synergistic effect, which leads to a signifi cantly enhanced chemotherapy effi cacy.
Abstract: PEI GO The RNA interference (RNAi) technique, an effective method to inhibit protein expression by targeted cleavage of messenger RNA (mRNA), has made substantial progress since the fi rst demonstration of gene knockdown in mammalian cells. [ 1 ] Short interfering RNA (siRNA) induces specifi c silencing of targeted protein, thus offering signifi cant potential in overcoming multiple drug resistance (MDR) of cancer cells. [ 2 ] For example, Bcl-2 protein, one of the main antiapoptotic defense proteins, is closely related to the MDR of cancer cells. [ 3 ] Knockdown of the Bcl-2 protein expression level in cancer cells by Bcl-2-targeted siRNA would effectively overcome the MDR of cancer cells and sensitize cancer cells to anticancer drugs. [ 3 d, 4 ] Herein, we report sequential delivery of Bcl-2-targeted siRNA and the anticancer drug doxorubicin (DOX) using polyethylenimine (PEI)-functionalized graphene oxide (PEI-GO). We demonstrate that the PEI-GO is an excellent nanocarrier for effective delivery of siRNA and chemical drugs, and that sequential delivery of the siRNA and DOX by PEI-GO into cancer cells exhibits a synergistic effect, which leads to a signifi cantly enhanced chemotherapy effi cacy. To the best of our knowledge, this is the fi rst report on applications of GO-based nanovectors for delivery of siRNA, and sequential delivery of siRNA and anticancer drugs into cancer cells. Graphene, a newly discovered 2D nanomaterial, has been studied extensively due to its fundamental importance and potential applications, [ 5 ] while exploration of its biomedical applications has just started. [ 6 ] Noncovalent adsorption through π – π stacking, electrostatic, and other molecular interactions has proven to be effective for immobilizing chemical drugs, single-stranded DNA, and RNA onto GO sheets. [ 6 a–e]

530 citations


Journal ArticleDOI
TL;DR: Nanodiamond-based drug delivery significantly enhanced treatment efficacy and safety in multiple chemoresistant cancer models and ND-conjugated chemotherapy represents a promising, biocompatible strategy for overcoming chemoresistance and enhancing chemotherapy efficacy andSafety.
Abstract: Enhancing chemotherapeutic efficiency through improved drug delivery would facilitate treatment of chemoresistant cancers, such as recurrent mammary tumors and liver cancer. One way to improve drug delivery is through the use of nanodiamond (ND) therapies, which are both scalable and biocompatible. Here, we examined the efficacy of an ND-conjugated chemotherapeutic in mouse models of liver and mammary cancer. A complex (NDX) of ND and doxorubicin (Dox) overcame drug efflux and significantly increased apoptosis and tumor growth inhibition beyond conventional Dox treatment in both murine liver tumor and mammary carcinoma models. Unmodified Dox treatment represents the clinical standard for most cancer treatment regimens, and NDX had significantly decreased toxicity in vivo compared to standard Dox treatment. Thus, ND-conjugated chemotherapy represents a promising, biocompatible strategy for overcoming chemoresistance and enhancing chemotherapy efficacy and safety.

512 citations


Journal ArticleDOI
TL;DR: It is shown that met formin is equally effective when given orally together with paclitaxel, carboplatin, and doxorubicin, indicating that metformin works together with a variety of standard chemotherapeutic agents.
Abstract: Metformin, the first-line drug for treating diabetes, selectively kills the chemotherapy-resistant, sub-population of cancer stem cells in genetically distinct types of breast cancer cell lines. In mouse xenografts, injection of metformin and the chemotherapeutic drug doxorubicin near the tumor is more effective than either drug alone in blocking tumor growth and preventing relapse. Here, we show that metformin is equally effective when given orally together with paclitaxel, carboplatin, and doxorubicin indicating that metformin works together with a variety of standard chemotherapeutic agents. In addition, metformin has comparable effects on tumor regression and preventing relapse when metformin combined with a 4-fold reduced dose of doxorubicin that is not effective as a monotherapy. Lastly, the combination of metformin and doxorubicin prevents relapse in xenografts generated with prostate and lung cancer cell lines. These observations provide further evidence for the cancer stem cell hypothesis for cancer relapse, as well as an experimental rationale for using metformin as part of combinatorial therapy in a variety of clinical settings and for reducing the chemotherapy dose in cancer patients.

407 citations


Journal ArticleDOI
11 Oct 2011-ACS Nano
TL;DR: Poly(ethylene glycol) (PEG)-conjugated hyaluronic acid nanoparticles (P-HA-NPs) showed promising potential as a drug carrier for cancer therapy.
Abstract: Tumor targetability and site-specific drug release of therapeutic nanoparticles are key factors for effective cancer therapy. In this study, poly(ethylene glycol) (PEG)-conjugated hyaluronic acid nanoparticles (P-HA-NPs) were investigated as carriers for anticancer drugs including doxorubicin and camptothecin (CPT). P-HA-NPs were internalized into cancer cells (SCC7 and MDA-MB-231) via receptor-mediated endocytosis, but were rarely taken up by normal fibroblasts (NIH-3T3). During in vitro drug release tests, P-HA-NPs rapidly released drugs when incubated with cancer cells, extracts of tumor tissues, or the enzyme Hyal-1, which is abundant in the intracellular compartments of cancer cells. CPT-loaded P-HA-NPs (CPT-P-HA-NPs) showed dose-dependent cytotoxicity to cancer cells (MDA-MB-231, SCC7, and HCT 116) and significantly lower cytotoxicity against normal fibroblasts (NIH-3T3) than free CPT. Unexpectedly, high concentrations of CPT-P-HA-NPs demonstrated greater cytotoxicity to cancer cells than free CPT. ...

357 citations


Journal ArticleDOI
TL;DR: The developed QD-MUC1-DOX conjugate had higher cytotoxicity than free DOX in multidrug resistant cancer cells and preferentially accumulated in ovarian tumor.

301 citations


Journal ArticleDOI
TL;DR: Overall, these data strongly support the pivotal contribution of both innate and adaptive immunity in treatment outcomes of anthracycline chemotherapy.
Abstract: We show, in a series of established experimental breast adenocarcinomas and fibrosarcomas induced by carcinogen de novo in mice, that the therapeutic efficacy of doxorubicin treatment is dependent on CD8 T cells and IFN-γ production. Doxorubicin treatment enhances tumor antigen-specific proliferation of CD8 T cells in tumor-draining lymph nodes and promotes tumor infiltration of activated, IFN-γ-producing CD8 T cells. Optimal doxorubicin treatment outcome also requires both interleukin (IL)-1β and IL-17 cytokines, as blockade of IL-1β/IL-1R or IL-17A/IL-17Rα signaling abrogated the therapeutic effect. IL-23p19 had no observed role. The presence of γδ T cells, but not Jα18(+) natural killer T cells, at the time of doxorubicin treatment was also important. In tumor samples taken from breast cancer patients prior to treatment with anthracycline chemotherapy, a correlation between CD8α, CD8β, and IFN-γ gene expression levels and clinical response was observed, supporting their role in the therapeutic efficacy of anthracyclines in humans. Overall, these data strongly support the pivotal contribution of both innate and adaptive immunity in treatment outcomes of anthracycline chemotherapy.

287 citations


Journal ArticleDOI
TL;DR: Overall, studies suggest that resveratrol can be used to sensitize tumors to standard cancer chemotherapeutic agents.
Abstract: Because tumors develop resistance to chemotherapeutic agents, the cancer research community continues to search for effective chemosensitizers. One promising possibility is to use dietary agents that sensitize tumors to the chemotherapeutics. In this review, we discuss that the use of resveratrol can sensitize tumor cells to chemotherapeutic agents. The tumors shown to be sensitized by resveratrol include lung carcinoma, acute myeloid leukemia, promyelocytic leukemia, multiple myeloma, prostate cancer, oral epidermoid carcinoma, and pancreatic cancer. The chemotherapeutic agents include vincristine, adriamycin, paclitaxel, doxorubicin, cisplatin, gefitinib, 5-fluorouracil, velcade, and gemcitabine. The chemosensitization of tumor cells by resveratrol appears to be mediated through its ability to modulate multiple cell-signaling molecules, including drug transporters, cell survival proteins, cell proliferative proteins, and members of the NF-κB and STAT3 signaling pathways. Interestingly, this nutraceutical has also been reported to suppress apoptosis induced by paclitaxel, vincristine, and daunorubicin in some tumor cells. The potential mechanisms underlying this dual effect are discussed. Overall, studies suggest that resveratrol can be used to sensitize tumors to standard cancer chemotherapeutics.

269 citations


Journal ArticleDOI
TL;DR: The fabrication and characterization of a drug-loaded iron oxide nanoparticle designed to circumventMultidrug resistance is described and it is suggested that DOX-conjugated nanoparticles could improve the efficacy of chemotherapy by circumventing MDR.

253 citations


Journal ArticleDOI
TL;DR: Reduction in miR-128 leading to Bmi-1 and ABCC5 overexpression is a stem cell–like feature of BT-ICs, which contributes to chemotherapeutic resistance in breast cancers.
Abstract: Purpose: Tumor-initiating cells are resistant to chemotherapy, but how microRNAs play a role in regulating drug resistance of breast tumor–initiating cells (BT-IC) needs to be clarified. Experimental Design: Lentivirus-mediated miR-128 transduction was done in BT-ICs, enriched by mammosphere cultures or CD44 + CD24 − fluorescence-activated cell sorting. Apoptosis and DNA damage were determined upon treatment with doxorubicin. Expression of miR-128 in breast cancer tissues was examined by in situ hybridization and correlated with breast tumor response to neoadjuvant chemotherapy and patient survival. Results: MiR-128 was significantly reduced in chemoresistant BT-ICs enriched from breast cancer cell lines and primary breast tumors ( P P P P P P Conclusions: Reduction in miR-128 leading to Bmi-1 and ABCC5 overexpression is a stem cell–like feature of BT-ICs, which contributes to chemotherapeutic resistance in breast cancers. Ectopic expression of miR-128 sensitizes BT-ICs to the proapoptotic and DNA-damaging effects of doxorubicin, indicating therapeutic potential. Clin Cancer Res; 17(22); 7105–15. ©2011 AACR .

Journal ArticleDOI
TL;DR: Combinational therapy by using DOX and CUR, especially when administered in the NP formulation, has enhanced the cytotoxicity in K562 cells by promoting the apoptotic response and has significant promise in the clinical management of intractable diseases, especially leukemia.
Abstract: Doxorubicin (DOX) is a broad-spectrum anthracycline antibiotic used to treat a variety of cancers including leukemia. Chronic myeloid leukemia (CML) blasts like K562 cells are resistant to apoptosis induced by DOX due to several reasons, the primary being the sequestration of drug into cytoplasmic vesicles and induction of multidrug resistance (MDR) gene expression with DOX treatment resulting in intracellular resistance to this drug. Moreover, expression of antiapoptotic protein BCL-2 and the hybrid gene bcr/abl in K562 cells contributes resistance to DOX. Studies have shown that curcumin (CUR) has a pleiotropic therapeutic effect in cancer treatment, as it is an inhibitor of nuclear factor kappa B (NFκB) as well as a potent downregulator of MDR transporters. In this study, we investigated the potential benefit of using DOX and CUR in a single nanoparticle (NP) formulation to inhibit the development of drug resistance for the enhancement of antiproliferative activity of DOX in K562 cells. Results illustr...

Journal ArticleDOI
22 Aug 2011-Aging-us
TL;DR: Chemotherapy-induced premature ovarian aging appears to result from a complex process involving both the germ- and non-germ cell components of the ovary, which may have clinical implications in aging both for premenopausal and postmenopausal cancer survivors.
Abstract: The mechanism of chemotherapy-induced acceleration of ovarian aging is not fully understood. We used doxorubicin, a widely used cancer chemotherapeutic, in a variety of in vivo xenograft, and in vitro models to investigate the impact of chemotherapy-induced aging on the human ovary. Doxorubicin caused massive double-strand-DNA-breaks in primordial follicles, oocytes, and granulosa cells in a dose dependent fashion as revealed by accumulating γH2AX foci. This damage was associated with apoptotic oocyte death and resulted in the activation of ATM. It appeared that the repair response enabled a minor proportion of oocytes (34.7%) and granulosa cells (12.1%) to survive while the majority succumbed to apoptotic death. Paradoxically, inhibition of ATM by KU-55933 resulted in improved survival, probably via prevention of downstream activation of TAp63α. Furthermore, doxorubicin caused vascular and stromal damage in the human ovary, which might impair ovarian function both pre- and post-menopausally. Chemotherapy-induced premature ovarian aging appears to result from a complex process involving both the germ- and non-germ cell components of the ovary. These effects may have clinical implications in aging both for premenopausal and postmenopausal cancer survivors.

Journal ArticleDOI
24 Dec 2011-Drugs
TL;DR: To conclude, pegylated liposomal doxorubicin is a useful option in the treatment of various malignancies, including metastatic breast cancer, ovarian cancer, multiple myeloma and AIDS-related Kaposi’s sarcoma.
Abstract: Pegylated liposomal doxorubicin (Caelyx™, Doxil®) represents an improved formulation of conventional doxorubicin, with reduced cardiotoxicity and an improved pharmacokinetic profile. This article reviews the efficacy and tolerability of pegylated liposomal doxorubicin in metastatic breast cancer, progressive ovarian cancer, relapsed or refractory multiple myeloma and AIDS-related Kaosi’s sarcoma, as well as summarizing its pharmacological properties. In three randomized, open-label, multicentre trials, monotherapy with pegylated liposomal doxorubicin was as effective as doxorubicin or capecitabine in the first-line treatment of metastatic breast cancer, and as effective as vinorelbine or combination mitomycin plus vinblastine in taxane-refractory metastatic breast cancer. Pegylated liposomal doxorubicin alone was as effective as topotecan or gemcitabine alone in patients with progressive ovarian cancer resistant or refractory to platinum- or paclitaxel-based therapy, according to the results of three randomized multicentre trials. In addition, in patients with progressive ovarian cancer who had received prior platinum-based therapy, progression-free survival was significantly longer with pegylated liposomal doxorubicin plus carboplatin than with paclitaxel plus carboplatin, according to the results of a randomized, open-label multicentre trial. Combination therapy with pegylated liposomal doxorubicin plus bortezomib was more effective than bortezomib alone in patients with relapsed or refractory multiple myeloma, according to the results of a randomized, open-label, multinational trial. Randomized multinational trials also demonstrated the efficacy of pegylated liposomal doxorubicin in patients with advanced AIDS-related Kaposi’s sarcoma. Pegylated liposomal doxorubicin exhibited a relatively favourable safety profile compared with conventional doxorubicin and other available chemotherapy agents. The most common treatment-related adverse events included myelosuppression, palmar-plantar erythrodysesthesia and stomatitis, although these are manageable with appropriate supportive measures. To conclude, pegylated liposomal doxorubicin is a useful option in the treatment of various malignancies, including metastatic breast cancer, ovarian cancer, multiple myeloma and AIDS-related Kaposi’s sarcoma.

Journal ArticleDOI
TL;DR: In a study involving nearly 5,000 breast malignancies, both test and validation set demonstrate that TOP2A coamplification, not HER2 amplification, is the clinically useful predictive marker of an incremental response to anthracycline-based chemotherapy.
Abstract: Purpose Approximately 35% of HER2-amplified breast cancers have coamplification of the topoisomerase II-alpha (TOP2A) gene encoding an enzyme that is a major target of anthracyclines. This study was designed to evaluate whether TOP2A gene alterations may predict incremental responsiveness to anthracyclines in some breast cancers. Methods A total of 4,943 breast cancers were analyzed for alterations in TOP2A and HER2. Primary tumor tissues from patients with metastatic breast cancer treated in a trial of chemotherapy plus/minus trastuzumab were studied for amplification/deletion of TOP2A and HER2 as a test set followed by evaluation of malignancies from two separate, large trials for changes in these same genes as a validation set. Association between these alterations and clinical outcomes was determined. Results Test set cases containing HER2 amplification treated with doxorubicin and cyclophosphamide (AC) plus trastuzumab, demonstrated longer progression-free survival compared to those treated with AC a...

Journal ArticleDOI
09 Jun 2011-Herz
TL;DR: New mechanisms of doxorubicin-induced cell death are described, including abnormal protein processing, hyper-activated innate immune responses, inhibition of neuregulin-1 (NRG1)/ErbB(HER) signalling, impaired progenitor cell renewal/cardiac repair, and decreased vasculogenesis.
Abstract: Doxorubicin is an effective anti-tumor agent with a cumulative dose-dependent cardiotoxicity. In addition to its principal toxic mechanisms involving iron and redox reactions, recent studies have described new mechanisms of doxorubicin-induced cell death, including abnormal protein processing, hyper-activated innate immune responses, inhibition of neuregulin-1 (NRG1)/ErbB(HER) signalling, impaired progenitor cell renewal/cardiac repair, and decreased vasculogenesis. Although multiple mechanisms involved in doxorubicin cardiotoxicity have been studied, there is presently no clinically proven treatment established for doxorubicin cardiomyopathy. Iron chelator dexrazoxane, angiotensin converting enzyme (ACE) inhibitors, and β-blockade have been proposed as potential preventive strategies for doxorubicin cardiotoxicity. Novel approaches such as anti-miR-146 or recombinant NRG1 to increase cardiomyocyte resistance to toxicity may be of interest in the future.

Journal ArticleDOI
Liang Han1, Rongqin Huang1, Jianfeng Li1, Shuhuan Liu1, Shixian Huang1, Chen Jiang1 
TL;DR: Results suggested that T7-mediated co-delivery system of DOX and pORF-hTRAIL was a simply prepared, combined delivery platform which can significantly improve the anti-tumor effect.

Journal ArticleDOI
TL;DR: The protective effect of RES against DOX-induced cardiomyocyte apoptosis is associated with the up-regulation of SIRT1-mediated p53 deacetylation.
Abstract: Aims Doxorubicin (DOX) is an anthracycline drug with a wide spectrum of clinical antineoplastic activity, but increased apoptosis has been implicated in its cardiotoxicity. Resveratrol (RES) was shown to harbour major health benefits in diseases associated with oxidative stress. In this study, we aimed to determine the effect of RES on DOX-induced myocardial apoptosis in mice. Methods and results Male Balb/c mice were randomized to one of the following four treatments: saline, RES, DOX, or RES plus DOX (10 mice in each group). DOX treatment markedly depressed cardiac function, decreased the heart weight, the body weight, and the ratio of heart weight to body weight, but inversely increased the level of protein carbonyl, malondialdehyde, and serum lactate dehydrogenase, and induced mitochondrial cytochrome c release and cardiomyocyte apoptosis. However, these effects of DOX were ameliorated by its combination with RES. Further studies with a co-immunoprecipitation assay revealed an interaction between p53 and Sirtuin 1 (SIRT1). It was found by western blot and electrophoretic mobility shift assay that DOX treatment increased p53 protein acetylation and cytochrome c release from mitochondria, activated p53 binding at the Bax promoter, and up-regulated Bax expression, but supplementation with RES could weaken all these effects. Conclusion The protective effect of RES against DOX-induced cardiomyocyte apoptosis is associated with the up-regulation of SIRT1-mediated p53 deacetylation.

Journal ArticleDOI
TL;DR: It appears that the development of oral doxorubicin preparations is possible, which will be more convenient than the intravenous dosage forms, and concurrent use of quercetin provides a therapeutic benefit — it increases the bioavailability of doxorbicin administered orally.
Abstract: Quercetin, a flavonoid, is an inhibitor of P-glycoprotein-mediated efflux transport, and its oxidative metabolism is catalyzed by CYP enzymes. Thus, it is expected that the pharmacokinetics of both intravenous and oral doxorubicin can be changed by quercetin. The purpose of this study was to investigate the effect of oral quercetin on the bioavailability and pharmacokinetics of orally and intravenously administered doxorubicin in rats. The effects of quercetin on the P-glycoprotein (P-gp) and CYP3A4 activities were also evaluated. Quercetin inhibited CYP3A4 enzyme activity in a concentration-dependent manner with a 50% inhibition concentration (IC50) of 1.97 μM. In addition, quercetin significantly enhanced the intracellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-gp. The pharmacokinetic parameters of doxorubicin were determined in rats after oral (50 mg/kg) or intravenous (10 mg/kg) administration of doxorubicin to rats in the presence and absence of quercetin (0.6, 3 or 15 mg/kg). Compared to control, quercetin significantly (p < 0.05 for 0.6 mg/kg, p < 0.01 for 3 and 15 mg/kg) increased the area under the plasma concentration-time curve (AUC0−∞, 31.2-136.0% greater) of oral doxorubicin. Quercetin also significantly increased the peak plasma concentration (Cmax) of doxorubicin, while there was no significant change in Tmax and T1/2 of doxorubicin. Consequently, the absolute bioavailability of doxorubicin was increased by quercetin compared to control, and the relative bioavailability of oral doxorubicin was increased by 1.32 to 2.36 fold. In contrast, the pharmacokinetics of intravenous doxorubicin were not affected by quercetin. These results suggest that the quercetin-induced increase in bioavailability of oral doxorubicin can be attributed to enhanced doxorubicin absorption in the gastrointestinal tract via quercetin-induced inhibition of P-gp and reduced first-pass metabolism of doxorubicin due to quercetin-induced inhibition of CYP3A in the small intestine and/or in the liver rather than reduced renal and/or hepatic elimination of doxorubicin. Therefore, it appears that the development of oral doxorubicin preparations is possible, which will be more convenient than the intravenous dosage forms. Therefore, concurrent use of quercetin provides a therapeutic benefit — it increases the bioavailability of doxorubicin administered orally.

Journal ArticleDOI
TL;DR: It is demonstrated that doxorubicin induces a systemic increase in IL-1β and other inflammatory cytokines, chemokines and growth factors including TNF-α, IL-6, CXCL1/Gro- α, CCL2/MCP-1, granulocyte colony stimulating factor (GCSF), and CxCL10/IP-10.
Abstract: Anthracyclines including doxorubicin and daunorubicin are commonly used for the treatment of both hematologic and solid tumors. Dose related adverse effects often limit the effectiveness of anthracyclines in chemotherapy. Drug-related systemic inflammation mediated by interleukin-1beta (IL-1β) has been implicated in contributing to these adverse effects. The molecular mechanisms underlying anthracycline-mediated expression and IL-1β release are not understood. Elucidating the molecular basis by which anthracyclines upregulate IL-1β activity may present opportunities to decrease the inflammatory consequences of these drugs. Here we demonstrate that doxorubicin induces a systemic increase in IL-1β and other inflammatory cytokines, chemokines and growth factors including TNF-α, IL-6, CXCL1/Gro-α, CCL2/MCP-1, granulocyte colony stimulating factor (GCSF), and CXCL10/IP-10. Studies with IL-1R-deficient mice demonstrate that IL-1 signaling plays a role in doxorubicin-induced increases in IL-6 and GCSF. In vitro studies with doxorubicin and daunorubicin failed to induce expression of proIL-1β in unprimed murine bone marrow-derived macrophages (BMDM) but enhanced the expression of proIL-1β in BMDM that had previously been primed with LPS. Furthermore, doxorubicin and daunorubicin induced the processing and release of IL-1β from LPS-primed BMDM by providing danger signals that lead to assembly and activation of the inflammasome. The release of IL-1β required the expression of ASC, caspase-1, and NLRP3, demonstrating that doxorubicin and daunorubicin-induced inflammation is mediated by the NLRP3 inflammasome. As with other agents that induce activation of the NLRP3 inflammasome, the ability of doxorubicin to provide proinflammatory danger signals was inhibited by co-treatment of cells with ROS inhibitors or by incubating cells in high extracellular potassium. These studies suggest that proinflammatory responses to anthracycline chemotherapeutic agents are mediated, at least in part, by promoting the processing and release of IL-1β, and that some of the adverse inflammatory consequences that complicate chemotherapy with anthracyclines may be reduced by suppressing the actions of IL-1β.

Journal ArticleDOI
Rong Liu1, Dong Li1, Bin He1, Xianghui Xu1, Mingming Sheng1, Yusi Lai1, Gang Wang1, Zhongwei Gu1 
TL;DR: In vitro experiments demonstrated that the anti-tumor effect of drug-loaded nanoparticles was preferable to free doxorubicin and the pH-sensitive PEG-PH-PLLA nanoparticles are promising carriers for anti-Tumor drug delivery.

Journal ArticleDOI
TL;DR: See also van den Berg YW, Reitsma PH. neutrophil extracellular traps provide another link between chemotherapy and thrombosis.

Journal ArticleDOI
TL;DR: In a tumor xenograft model, anti-c-Met immunoliposome was found to selectively increase tumor accumulation of a chemotherapeutic drug and enhance its antitumor activity.

Journal ArticleDOI
TL;DR: This study is the first to demonstrate that DOX oxidizes plasma APOA1, that oxidized APoa1 enhances macrophage TNF-α release and thus could contribute to potential subsequent TNF -α-mediated toxicity, and that MESNA interacts with DOX to block this mechanism and suggests that M ESNA could reduce systemic side effects of DOX.

Journal ArticleDOI
TL;DR: Results indicate that doxorubicin is localized exclusively in the cytoplasm of resistant 4T1 breast cancer cells and that it cannot reach the nucleus because of increased nuclear expression of P-glycoprotein.
Abstract: Development of drug resistance is one of the major causes of breast cancer treatment failure. The goal of this study was to understand the chemoresistance mechanism using the highly metastatic 4T1 breast cancer model, which emulates stage IV breast cancer in humans. The metastatic 4T1 breast cancer cell line treated with either doxorubicin or 5-FU showed a concentration-dependent reduced cell proliferation, with induced G2-phase growth arrest (doxorubicin) or G1-phase growth arrest (5-FU). Doxorubicin treatment partially suppressed the multiorgan metastasis of 4T1 breast cancer cells in the lung, heart, liver, and bone, compared with either 5-FU or cyclophosphamide. We isolated and characterized 4T1 breast cancer cells from doxorubicin-resistant metastatic tumors (cell line 4T1-R). Multiorgan metastasis of drug-resistant 4T1 breast tumors was totally resistant to doxorubicin treatment. Our results indicate that doxorubicin is localized exclusively in the cytoplasm of resistant 4T1 breast cancer cells and that it cannot reach the nucleus because of increased nuclear expression of P-glycoprotein. Pretreatment of doxorubicin-resistant 4T1-R breast cancer cells with verapamil, a general inhibitor of P-glycoprotein, increased nuclear translocation of doxorubicin and cellular cytotoxicity. Thus, impaired nuclear translocation of doxorubicin due to increased expression of P-glycoprotein is associated with doxorubicin resistance of highly metastatic 4T1 breast cancer.

Journal ArticleDOI
TL;DR: Thymoquinone is a booster for the anti-cancer effect of doxorubicin in certain cancer cell lines and shows significant improvements on efficacy, selectivity, and even breaches of multi-drug resistance.
Abstract: Doxorubicin is a mainstay of cancer chemotherapy despite its clinical limitations that arise from its cardiotoxicity and the high incidence of multi-drug resistance. Recent studies revealed a protective effect of thymoquinone, a non-toxic constituent of the essential oil of Nigella sativa, against doxorubicin-induced cardiotoxicity. We now investigated the influence of thymoquinone on various other effects exerted by doxorubicin in human cancer cells. Doxorubicin, thymoquinone and equimolar mixtures of both were tested for cytotoxicity on human cells of HL-60 leukaemia, 518A2 melanoma, HT-29 colon, KB-V1 cervix, and MCF-7 breast carcinomas as well as multi-drug-resistant variants thereof and on non-malignant human fibroblasts (HF). Apoptosis induction was analysed via DNA fragmentation, activity studies of the caspases-3, -8 and -9, determination of changes in the mitochondrial membrane potential and in the ratio of the mRNA expressions of pro- and anti-apoptotic proteins bax and bcl-2. The generation of reactive oxygen species (ROS) was assessed by the NBT assay. Thymoquinone improved the anti-cancer properties of doxorubicin in a cell line-specific manner. We found a significant rise of the growth inhibition by doxorubicin in HL-60 and multi-drug-resistant MCF-7/TOPO cells when thymoquinone had been added. The mode of action of both drugs and of their mixture was mainly apoptotic. In HL-60 cells, the drug mixture caused an additional concentration maximum of effector caspase-3 not observed for either of the pure drugs. The impact of the drug mixture on the mitochondria of HL-60 cells was also greater than those of the individual quinones alone. In addition, the drug mixture led to a higher concentration of reactive oxygen species in HL-60 cells. In summary, thymoquinone is a booster for the anti-cancer effect of doxorubicin in certain cancer cell lines. Distinct improvements on efficacy, selectivity, and even breaches of multi-drug resistance were observed for equimolar mixtures of doxorubicin and thymoquinone.

Journal ArticleDOI
Zhaoxia Wang1, Binbin Lu1, He Wang1, Zhi-Xiang Cheng1, Yong-Mei Yin1 
TL;DR: It was shown that upregulation of miR-21 in MCF-7/ADR cells was concurrent with downregulation of PTEN protein, which could affect the sensitivity of breast cancer cells to ADR.

Journal ArticleDOI
TL;DR: The findings strongly suggest that the anticancer effect of TET in colon cancer may be at least in part mediated by targeting β-catenin activity.
Abstract: As one of the most common malignancies, colon cancer is initiated by abnormal activation of the Wnt/β-catenin pathway. Although the treatment options have increased for some patients, overall progress has been modest. Thus, there is a great need to develop new treatments. We have found that bisbenzylisoquinoline alkaloid tetrandrine (TET) exhibits anticancer activity. TET is used as a calcium channel blocker to treat hypertensive and arrhythmic conditions in Chinese medicine. Here, we investigate the molecular basis underlying TET's anticancer activity. We compare TET with six chemotherapy drugs in eight cancer lines and find that TET exhibits comparable anticancer activities with camptothecin, vincristine, paclitaxel, and doxorubicin, and better than that of 5-fluorouracil (5-FU) and carboplatin. TET IC50 is ≤5 μM in most of the tested cancer lines. TET exhibits synergistic anticancer activity with 5-FU and reduces migration and invasion capabilities of HCT116 cells. Furthermore, TET induces apoptosis and inhibits xenograft tumor growth of colon cancer. TET treatment leads to a decrease in β-catenin protein level in xenograft tumors, which is confirmed by T-cell factor/lymphocyte enhancer factor and c-Myc reporter assays. It is noteworthy that HCT116 cells with allelic oncogenic β-catenin deleted are less sensitive to TET-mediated inhibition of proliferation, viability, and xenograft tumor growth. Thus, our findings strongly suggest that the anticancer effect of TET in colon cancer may be at least in part mediated by targeting β-catenin activity. Therefore, TET may be used alone or in combination as an effective anticancer agent.

Journal ArticleDOI
TL;DR: Quercetin associated with doxorubicin demonstrated very promising properties for developing chemotherapeutics combinations for the therapy of breast cancer.
Abstract: Doxorubicin is a first-line chemotherapeutic for breast cancer; however, it is associated with severe side effects to non-tumoral tissues. Thus, it is necessary to develop new therapeutic combinations to improve doxorubicin effects at lower concentration of the drug associated with protective effects for non-tumoral cells. In this work, we evaluated whether the plant-derived flavonoid quercetin may represent such an agent. The effects of doxorubicin and quercetin as single agents and in combination were evaluated on cell survival, DNA and protein synthesis, oxidative stress, migratory potential and cytoskeleton and nucleus structure in highly invasive and poorly invasive human breast cancer cells in comparison with non-tumoral human breast cells. In human breast cancer cells, quercetin potentiated antitumor effects of doxorubicin specifically in the highly invasive breast cancer cells and attenuated unwanted cytotoxicity to non-tumoral cells. Quercetin interfered with cell metabolism, GST activity, cytoskeleton and invasive properties specifically in breast tumor cells compared with non-tumoral breast cells. Doxorubicin induced DNA damage in tumor and non-tumor cells; however, quercetin reduced this damage only in non-tumoral cells, thus offering a protective effect for these cells. Quercetin also induced polynucleation in aggressive tumor cells, which was maintained in combination with doxorubicin. By combining quercetin with doxorubicin, an increase in doxorubicin effects was obtained specifically in the highly invasive breast cancer cells, while in non-tumoral cells quercetin reduced doxorubicin cytotoxic side effects. Thus, quercetin associated with doxorubicin demonstrated very promising properties for developing chemotherapeutics combinations for the therapy of breast cancer.

Journal ArticleDOI
TL;DR: It is suggested that doxorubicin induces cardiac apoptosis via the activation of JNK-p38 and p53-mediated signalling pathways, where H( 2)O(2) acts as the mediators of these pathways.